【題目】如圖,在中,,,是邊上點(diǎn)(點(diǎn)與,不重合),連結(jié),將線段繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)90°得到線段,連結(jié)交于點(diǎn),連接.
(1)求證:;
(2)當(dāng)時(shí),求的度數(shù);
(3)若,,求的長.
【答案】(1)見解析;(2);(3)
【解析】
(1)由題意可知:CD=CE,∠DCE=90°,由于∠ACB=90°,所以∠ACD=∠ACB-∠DCB,∠BCE=∠DCE-∠DCB,所以∠ACD=∠BCE,從而可證明△ACD≌△BCE(SAS)
(2)由△ACD≌△BCE可得∠A=∠CBE=45°,AD=BE=BF,從而可求出∠BEF的度數(shù);
(3)根據(jù)∠DBE=∠ABC+∠CBE=90°,可得△DBE是直角三角形,由勾股定理可求出DE的長,進(jìn)而可求出CD的長.
(1)證明:由題意可知:,,
∵,
∴,
,
∴,
在與中,
,
∴
(2)∵,,
∴,
∵
∴,AD=BE;
∵,
∴,
∴;
(3)∵,
∴,,
∵,
∴,
∵,
∴是直角三角形,
∴,
∵是等腰直角三角形,
∴
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C,D是半圓O上的三等分點(diǎn),直徑AB=4,連接AD,AC,作DE⊥AB,垂足為E,DE交AC于點(diǎn)F.
(1)求證:AF=DF.
(2)求陰影部分的面積(結(jié)果保留π和根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的兩邊落在坐標(biāo)軸上,反比例函數(shù)y=的圖象在第一象限的分支過AB的中點(diǎn)D交OB于點(diǎn)E,連接EC,若△OEC的面積為12,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程mx2+(2m+1)x+m=0有兩個(gè)實(shí)數(shù)根.
(1)求m的取值范圍
(2)是否存在實(shí)數(shù)m,使方程的兩實(shí)數(shù)根的倒數(shù)和為0?若存在,請求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O中,弦AB⊥AC,且AB=AC=6,點(diǎn)D在⊙O上,連接AD,BD,CD.
(1)如圖1,若AD經(jīng)過圓心O,求BD,CD的長;
(2)如圖2,若∠BAD=2∠DAC,求BD,CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A在雙曲線y=(x>0)上,點(diǎn)B在雙曲線y=(x>0)上,且AB∥x軸,BC∥y軸,點(diǎn)C在x軸上,則△ABC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:角的內(nèi)部一點(diǎn)到角兩邊的距離比為1:2,這個(gè)點(diǎn)與角的頂點(diǎn)所連線段稱為這個(gè)角的二分線.如圖1,點(diǎn)P為∠AOB內(nèi)一點(diǎn),PA⊥OA于點(diǎn)A,PB⊥OB于點(diǎn)B,且PB=2PA,則線段OP是∠AOB的二分線.
(1)圖1中,OP為∠AOB的二分線,PB=4,PA=2,且OA+OB=8,求OP的長;
(2)如圖2,正方形ABCD中,AB=2,點(diǎn)E是BC中點(diǎn),證明:DE是∠ADC的二分線;
(3)如圖3,四邊形ABCD中,AB∥CD,∠ABC=90°,且∠CAB<∠CAD,∠BDC<∠BDA,若AC,BD分別是∠DAB,∠ADC的二分線,證明:四邊形ABCD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)D為拋物線頂點(diǎn),點(diǎn)E在拋物線上,點(diǎn)F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3,則△ABD的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=6,PB=8,PC=10.若將△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,得到△P′AB.
(1)求點(diǎn)P與點(diǎn)P′之間的距離;
(2)求∠APB的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com