【題目】如圖,已知在中,,點D在邊上,且,.則的度數為________°.
【答案】105
【解析】
取線段CD的中點E,連接AE,根據直角三角形斜邊上的中線等于斜邊的一半可得AE=EC=DE=DC,再根據等邊對等角的性質可得∠EAC=∠C,然后根據三角形的一個外角等于與它不相鄰的兩個內角的和求出∠AEB,再求出AB=AE,根據等邊對等角的性質求出∠B=∠AEB,然后利用三角形的內角和等于180°列式進行計算即可得解.
取線段CD的中點E,連接AE,
∵∠DAC=90°,
∴AE=EC=DE=DC,(直角三角形斜邊上的中線等于斜邊的一半),
∴∠EAC=∠C,
∵∠C=25°,
∴∠AEB=∠EAC+∠C=50°,
∵AB=DC,
∴AB=AE(等量代換),
∴∠B=∠AEB=50°,
∵∠B+∠C+∠BAC=180°,
即50°+25°+∠BAC=180°,
∴∠BAC=105°.
故答案為:105.
科目:初中數學 來源: 題型:
【題目】某電器超市銷售每臺進價分別為160元,200元的A、B兩種型號的電風扇,表中是近兩周的銷售情況:
銷售時段 | 銷售數量 | 銷售收入/元 | |
A種型號/臺 | B種型號/臺 | ||
第1周 | 3 | 5 | 1800 |
第2周 | 4 | 10 | 3200 |
(1)A、B兩種型號的電風扇的銷售單價是多少?
(2)若該超市準備用不多于5400元的金額再次采購這兩種型號的電風扇共30臺,則A種型號的電風扇最多能采購多少臺?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列資料,并解決問題.
地球上的水包括大氣水、地表水和地下水三大類,地表水可以分為海洋水和陸地水,陸地水又可分為冰川、河流、湖泊等。地球上的水總體積是14.2億,其中,海洋水約占96.53%以上,淡水約占2.53%,而在淡水中,大部分在兩極的冰川、冰蓋和地下水的形式存在,其中冰川、冰蓋占77.2%,地下水占22.4%,而人類可以利用的水還不到1%.
我國是世界上嚴重缺水的國家之一,年水資源總量居世界第六位,人均占有水量僅為左右,只相當于世界人均的,居世界第110位,中國已被聯合國列為13個貧水國之一.
圖1是我國2006年至2015年水資源總量變動趨勢圖,全國用水量由農業(yè)用水、工業(yè)用水、生活用水和生態(tài)補水四部分組成,表1是2015年我國四類用水量統(tǒng)計表.
表1 2015年四類用水統(tǒng)計表
用水類別 | 用水量(億立方米) | 所占百分比 |
農業(yè)用水 | 3903.9 | 63.17% |
工業(yè)用水 | 1380.6 | 22.34% |
生活用水 | 790.5 | 12.79% |
生態(tài)補水 | 105.0 | 1.70% |
解決問題:
(1)根據國外的經驗,一個國家的用水量超過其水資源總量20%,就有可能發(fā)生“水危機”.依據這個標準,請你計算2015年我國是否屬于可能發(fā)生“水危機”行列?
(2)第四十七屆聯合國大會作出決議,確定每年3月22日為“世界水日”.我國水利部確定每年的3月22日至28日是“中國水周”.我國紀念“世界水日”和“中國水周”宣傳活動的主題是“實施國家節(jié)水行動,建設節(jié)水型社會”.小亮作為學校的節(jié)水行動宣傳志愿者,對他所在學校部分學生進行了“節(jié)水在行動”的隨機調查,表2是問卷調查表,并將調查結果繪制成圖2和圖3所示的統(tǒng)計圖(均不完整),請根據統(tǒng)計圖提供的信息,解答下列問題:
①參與本次調查的學生人數有________人(直接寫出答案);
②補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中,觀點的百分比是_______(直接寫出答案);
表2:節(jié)水問卷調查表 | ||
你好,請在表格中選擇一項你對節(jié)水的認識,在其后面打“√”,非常感謝你的合作. | ||
代碼 | 觀點 | |
A | 水費低,不需要節(jié)水 | |
B | 節(jié)水意識薄弱,認為水資源充足 | |
C | 缺乏社會責任意識,節(jié)水與我無關 | |
D | 知道節(jié)水的重要性,并有節(jié)水的好習慣 |
③若該學校共有800名學生,請估計其中“知道節(jié)水的重要性,并有節(jié)水的好習慣”的有多少人?
④談一談你對節(jié)約用水的看法.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的口袋里裝有紅、黃、綠三種顏色的球(除顏色不同外其余都相同),其中紅球有2個,黃球有1個,從中任意捧出1球是紅球的概率為
(1)試求袋中綠球的個數;
(2)第1次從袋中任意摸出l球(不放回),第2次再任意摸出1球,請你用畫樹狀圖或列表格的方法,求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰直角三角形ABC,AB=BC,直角頂點B在直線PQ上,且AD⊥PQ于D,CE⊥PQ于E.
(1)△ADB與△BEC全等嗎?為什么?
(2)圖1中,AD、DE、CE有怎樣的等量關系?說明理由.
(3)將直線PQ繞點B旋轉到如圖2所示的位置,其他條件不變,那么AD、DE、CE有怎樣的等量關系?直接寫出結果.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(發(fā)現)任意三個連續(xù)偶數的平方和是4的倍數。
(驗證)(1)的結果是4的幾倍?
(2)設三個連續(xù)偶數的中間一個為,寫出它們的平方和,并說明是4的倍數。
(延伸)(3)設三個連續(xù)奇數的中間一個數為,寫出它們的平方和,它是12的倍數嗎?若是,說明理由,若不是,寫出被12除余數是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,作△OAB,其中三個頂點分別是O(0,0),B(1,1),A(x,y)(-2≤x≤2,-2≤y≤2,x,y均為整數),則所作△OAB為直角三角形的概率是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,P為正方形ABCD的邊BC上一動點(P與B、C不重合),連接AP,過點B作BQ⊥AP交CD于點Q,將△BQC沿BQ所在的直線對折得到△BQC′,延長QC′交BA的延長線于點M.
(1)試探究AP與BQ的數量關系,并證明你的結論;
(2)當AB=3,BP=2PC,求QM的長;
(3)當BP=m,PC=n時,求AM的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明騎自行車上學,幵始以正常速度勻速行駛,但行至中途時,自行車出了故障,只好停下來修車,車修好后,因怕耽誤上課,他比修車前加快了速度繼續(xù)勻速行駛,下面是行駛路程關于時間的圖象,那么符合小明行駛情況的大致圖象是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com