【題目】如圖,P為正方形ABCD的邊BC上一動(dòng)點(diǎn)(P與B、C不重合),連接AP,過點(diǎn)B作BQ⊥AP交CD于點(diǎn)Q,將△BQC沿BQ所在的直線對(duì)折得到△BQC′,延長(zhǎng)QC′交BA的延長(zhǎng)線于點(diǎn)M.
(1)試探究AP與BQ的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)當(dāng)AB=3,BP=2PC,求QM的長(zhǎng);
(3)當(dāng)BP=m,PC=n時(shí),求AM的長(zhǎng).
【答案】(1)AP=BQ;(2)QM的長(zhǎng)為;(3)AM的長(zhǎng)為.
【解析】
(1)要證AP=BQ,只需證△PBA≌△QCB即可;
(2)過點(diǎn)Q作QH⊥AB于H,如圖.易得QH=BC=AB=3,BP=2,PC=1,然后運(yùn)用勾股定理可求得AP(即BQ)=,BH=2.易得DC∥AB,從而有∠CQB=∠QBA.由折疊可得∠C′QB=∠CQB,即可得到∠QBA=∠C′QB,即可得到MQ=MB.設(shè)QM=x,則有MB=x,MH=x-2.在Rt△MHQ中運(yùn)用勾股定理就可解決問題;
(3)過點(diǎn)Q作QH⊥AB于H,如圖,同(2)的方法求出QM的長(zhǎng),就可得到AM的長(zhǎng).
解:(1)AP=BQ.
理由:∵四邊形ABCD是正方形,
∴AB=BC,∠ABC=∠C=90°,
∴∠ABQ+∠CBQ=90°.
∵BQ⊥AP,
∴∠PAB+∠QBA=90°,
∴∠PAB=∠CBQ.
在△PBA和△QCB中,
,
∴△PBA≌△QCB,
∴AP=BQ;
(2)過點(diǎn)Q作QH⊥AB于H,如圖.
∵四邊形ABCD是正方形,
∴QH=BC=AB=3.
∵BP=2PC,
∴BP=2,PC=1,
∴BQ=AP===,
∴BH===2.
∵四邊形ABCD是正方形,
∴DC∥AB,
∴∠CQB=∠QBA.
由折疊可得∠C′QB=∠CQB,
∴∠QBA=∠C′QB,
∴MQ=MB.
設(shè)QM=x,則有MB=x,MH=x-2.
在Rt△MHQ中,
根據(jù)勾股定理可得x2=(x-2)2+32,
解得x=.
∴QM的長(zhǎng)為;
(3)過點(diǎn)Q作QH⊥AB于H,如圖.
∵四邊形ABCD是正方形,BP=m,PC=n,
∴QH=BC=AB=m+n.
∴BQ2=AP2=AB2+PB2,
∴BH2=BQ2-QH2=AB2+PB2-AB2=PB2,
∴BH=PB=m.
設(shè)QM=x,則有MB=QM=x,MH=x-m.
在Rt△MHQ中,
根據(jù)勾股定理可得x2=(x-m)2+(m+n)2,
解得x=m+n+,
∴AM=MB-AB=m+n+-m-n=.
∴AM的長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,AD=1,點(diǎn)P在線段AB上運(yùn)動(dòng),現(xiàn)將紙片折疊,使點(diǎn)D與點(diǎn)P重合,得折痕EF(點(diǎn)E、F為折痕與矩形邊的交點(diǎn)),再將紙片還原設(shè)四邊形EPFD的面積為S,當(dāng)四邊形EPFD為菱形時(shí),請(qǐng)寫出S的取值范圍____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小紅和小明在操場(chǎng)做游戲,他們先在地上畫了半徑分別2m和3m的同心圓(如圖),蒙上眼在一定距離外向圈內(nèi)擲小石子,擲中陰影小紅勝,否則小明勝,未擲入圈內(nèi)不算,你來當(dāng)裁判.
(1)你認(rèn)為游戲公平嗎?為什么?
(2)游戲結(jié)束,小明邊走邊想,“反過來,能否用頻率估計(jì)概率的方法,來估算某一不規(guī)則圖形的面積呢”.請(qǐng)你設(shè)計(jì)方案,解決這一問題.(要求補(bǔ)充完整圖形,說明設(shè)計(jì)步驟、原理,寫出估算公式)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)O是AC邊上(端點(diǎn)除外)的一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線MN∥BC.設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F,連接AE、AF.
(1)求證:OE=OF;
(2)那么當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),試判斷四邊形AECF的形狀并說明理由;
(3)在(2)的前提下△ABC滿足什么條件,四邊形AECF是正方形?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(≠0)的圖象如圖,給出下列四個(gè)結(jié)論:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠1),其中結(jié)論正確的個(gè)數(shù)是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,點(diǎn)D是BC邊上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),在AC上取一點(diǎn)E,使∠ADE=30°.
(1)求證:△ABD∽△DCE;
(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式并寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是邊長(zhǎng)為4cm的正方形對(duì)角線的交點(diǎn),是的中點(diǎn),動(dòng)點(diǎn)由點(diǎn)開始沿折線方向勻速運(yùn)動(dòng),到點(diǎn)時(shí)停止運(yùn)動(dòng),速度為.設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為,點(diǎn)的運(yùn)動(dòng)路徑與、所圍成的圖形面積為,則描述面積與時(shí)間的關(guān)系的圖象是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地為了解青少年實(shí)力情況,現(xiàn)隨機(jī)抽查了若干名初中學(xué)生進(jìn)行視力情況統(tǒng)計(jì),分為視力正常、輕度近視、重度近視三種情況,并繪成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(不完整),請(qǐng)你根據(jù)圖中信息解答下列問題:
(1)求這次被抽查的學(xué)生一共有多少人?
(2)求被抽查的學(xué)生中輕度近視的學(xué)生人數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若某地有萬名初中生,請(qǐng)估計(jì)視力不正常(包括輕度近視、重度近視)的學(xué)生共有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com