【題目】為弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,某校組織了“古詩(shī)詞”知識(shí)競(jìng)賽,由九年級(jí)的若干名學(xué)生參加選拔賽,從中選出10名優(yōu)勝者,下面是對(duì)參賽學(xué)生成績(jī)的不完整統(tǒng)計(jì).
(1)統(tǒng)計(jì)表中,=_____;各組人數(shù)的中位數(shù)是_____;統(tǒng)計(jì)圖中,組所在扇形的圓心角是_____°;
(2)李明同學(xué)得了88分,他說(shuō)自己在參加選拔賽的同學(xué)中屬于中午偏上水平,你認(rèn)為他說(shuō)的有道理嗎?為什么?
(3)選出的10名優(yōu)勝者中,男生、女生的分布情況如下表.
一班 | 二班 | 三班 | 四班 | 五班 | 六班 | |
男生人數(shù) | 1 | 1 | 2 | 1 | 0 | 0 |
女生人數(shù) | 1 | 0 | 0 | 2 | 1 | 1 |
若從中任選1名男生和1名女生代表學(xué)校參加全區(qū)的比賽,請(qǐng)有列表法或畫(huà)樹(shù)狀圖法求男生和女生都出在四班的概率.
【答案】(1)5,6.5,72;(2)有道理.理由見(jiàn)解析;(3)選出的男生和女生都來(lái)自四班的概率是.
【解析】
(1)根據(jù)A組人數(shù)占總?cè)藬?shù)的15%求得總?cè)藬?shù),再用總?cè)藬?shù)減去A、B、C、D、E五組的人數(shù)邊求得a的值;把各組人數(shù)按由少到多排列便能求出各組人數(shù)的中位數(shù);先求C組人數(shù)占總?cè)藬?shù)的百分比,再用360°乘以這個(gè)百分比便能求得組所在扇形的圓心角;
(2)根據(jù)85分以下的有20人占50%,再用85與之比較即可;
(3)用列表法列舉出所有可能出現(xiàn)的結(jié)果數(shù),從中找出男生和女生都出在四班的結(jié)果數(shù),進(jìn)而求出概率.
解:(1)6÷15%=40(人)
40-6-6-8-7-8=5(人)
故a=5,
六組人數(shù)按照由少到多的順序排列為:5,6,6,7,8,8,
故各組人數(shù)的中位數(shù)是,
組所在扇形的圓心角是360°×72°,
故答案為:5,6.5,72;
(2)正確.
理由:參加選拔賽的共有40人,85分以下的有20人占50%,他得了88分,可以說(shuō)是中等偏上水平.
(3)由題意可知10名優(yōu)勝者中,男生、女生各5名.
用代表男生,其中四班男生為,用代表女生,其中為四班女生,列表如下:
由表格可知,共有25種等可能的情況,其中選出的一男一女都來(lái)自四班的情況有2種,
故選出的男生和女生都來(lái)自四班的概率是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,E是BC邊的中點(diǎn), F是CD邊上的一點(diǎn), 且DF=1.若M、N分別是線段AD、AE上的動(dòng)點(diǎn),則MN+MF的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為落實(shí)“美麗泰州”的工作部署,市政府計(jì)劃對(duì)城區(qū)道路進(jìn)行改造,現(xiàn)安排甲、乙兩個(gè)工程隊(duì)完成該改造工作.已知甲隊(duì)的工作效率是乙隊(duì)工作效率的倍,甲隊(duì)改造720米的道路比乙隊(duì)改造同樣長(zhǎng)的道路少用4天.
(1)甲、乙兩工程隊(duì)每天能改造道路的長(zhǎng)度分別是多少米?
(2)若甲隊(duì)工作一天需付費(fèi)用7萬(wàn)元,乙隊(duì)工作一天需付費(fèi)用5萬(wàn)元,若需改造的道路全長(zhǎng)2400米,改造總費(fèi)用不超過(guò)195萬(wàn)元,則至少安排甲隊(duì)工作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,BC為⊙O直徑,延長(zhǎng)AC至D,過(guò)D作⊙O切線,切點(diǎn)為E,且∠D=90°,連接BE.DE=12,
(1)若CD=4,求⊙O的半徑;
(2)若AD+CD=30,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于,兩點(diǎn),其中,,與軸交于點(diǎn),拋物線的對(duì)稱軸交軸于點(diǎn),直線經(jīng)過(guò)點(diǎn),,連接.
(1)求拋物線和直線的解析式:
(2)若拋物線上存在一點(diǎn),使的面積是面積的2倍,求點(diǎn)的坐標(biāo);
(3)在拋物線的對(duì)稱軸上是否存在一點(diǎn),使線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,且恰好落在拋物線上?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)叫理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段AB,A(2,3),B(5,3),拋物線y=﹣(x﹣1)2﹣m2+2m+1與x軸的兩個(gè)交點(diǎn)分別為C,D(點(diǎn)C在點(diǎn)D的左側(cè))
(1)求m為何值時(shí)拋物線過(guò)原點(diǎn),并求出此時(shí)拋物線的解析式及對(duì)稱軸和項(xiàng)點(diǎn)坐標(biāo).
(2)設(shè)拋物線的頂點(diǎn)為P,m為何值時(shí)△PCD的面積最大,最大面積是多少.
(3)將線段AB沿y軸向下平移n個(gè)單位,求當(dāng)m與n有怎樣的關(guān)系時(shí),拋物線能把線段AB分成1:2兩部分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y=(x>0)的圖象上一點(diǎn)A(m,4),過(guò)點(diǎn)A作AB⊥x軸于B,CD∥AB,交x軸于C,交反比例函數(shù)圖象于D,BC=2,CD=.
(1)求反比例函數(shù)的表達(dá)式;
(2)若點(diǎn)P是y軸上一動(dòng)點(diǎn),求PA+PB的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線交x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)D在直線AB上,點(diǎn)D的縱坐標(biāo)為6,點(diǎn)C在x軸上且位于原點(diǎn)右側(cè),連接CD,且.
如圖1,求直線CD的解析式;
如圖2,點(diǎn)P在線段AB上點(diǎn)P不與點(diǎn)A,B重合,過(guò)點(diǎn)P作軸,交CD于點(diǎn)Q,點(diǎn)E是PQ的中點(diǎn),設(shè)P點(diǎn)的橫坐標(biāo)為t,EQ的長(zhǎng)為d,求d與t之間的函數(shù)關(guān)系式,并直接寫(xiě)出自變量t的取值范圍;
如圖3,在的條件下,以CQ為斜邊作等腰直角,且點(diǎn)M在直線CD的右側(cè),連接OE,OM,當(dāng)時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,橫坐標(biāo)、縱坐標(biāo)都為整數(shù)的點(diǎn)稱為整點(diǎn).請(qǐng)你觀察圖中正方形A1B1C1D1,A2B2C2D2,A3B3C3D3…每個(gè)正方形四條邊上的整點(diǎn)的個(gè)數(shù).按此規(guī)律推算出正方形A10B10C10D10四條邊上的整點(diǎn)共有______個(gè).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com