【題目】如圖,在正方形ABCD中,AB=4,E是BC邊的中點(diǎn), F是CD邊上的一點(diǎn), 且DF=1.若M、N分別是線段AD、AE上的動(dòng)點(diǎn),則MN+MF的最小值為________.
【答案】
【解析】
作點(diǎn)F關(guān)于AD的對(duì)稱(chēng)點(diǎn)G,過(guò)點(diǎn)G作GN⊥AE于點(diǎn)N,交AD于點(diǎn)M,可證得MG=MF,△MDG≌△MDF,DF=DG=1 ,可推出MN+MF=NG,根據(jù)垂線段最短,可知此時(shí)MN+MF的最小值就是NG的長(zhǎng);利用正方形的性質(zhì),可求出BE的長(zhǎng),同時(shí)可以推出∠B=∠ANM=∠FDM,∠AMN=∠BAE=∠FMD,再利用有兩組對(duì)應(yīng)角相等的三角形相似,可證得△ABE∽△MNA∽△FMD,然后利用相似三角形的性質(zhì)及勾股定理就可求出MN,MG的長(zhǎng),由此看求出NG的長(zhǎng).
作點(diǎn)F關(guān)于AD的對(duì)稱(chēng)點(diǎn)G,過(guò)點(diǎn)G作GN⊥AE于點(diǎn)N,交AD于點(diǎn)M,
∴MG=MF,△MDG≌△MDF,DF=DG=1
∴∠GMD=∠DMF
∴MN+MF=MN+MG=NG
根據(jù)垂線段最短,可知此時(shí)MN+MF的最小值就是NG的長(zhǎng).
∵正方形BCD,點(diǎn)E是BC的中點(diǎn)
∴BE=BC=AB=2
∴∠B=∠ANM=∠FDM=90°,∠BAE+∠MAN=90°,
∵∠AMN+∠MAN=90°,
∴∠AMN=∠BAE,
∵∠AMN=∠DMG
∴∠AMN=∠BAE=∠FMD
∴△ABE∽△MNA∽△FMD
∴即
解之:MD=2,
∴AM=AD-MD=4-2=2
∴
設(shè)AN=x,則MN=2x
∴AN2+MN2=AM2,
∴x2+4x2=4
解之:AN=x=
∴MN=2AN=;
在Rt△MDG中,MG=
∴NG=MN+MG=.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】李老師為了解某校學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,對(duì)部分學(xué)生進(jìn)行了跟蹤調(diào)查,并將調(diào)查結(jié)果分為四類(lèi),A:很好;B:較好;C:一般;D:較差.繪制成如下統(tǒng)計(jì)圖.
(1)李老師一共調(diào)查了多少名同學(xué)?并將下面條形統(tǒng)計(jì)圖補(bǔ)充完整.
(2)若該校有1000名學(xué)生,則數(shù)學(xué)課前預(yù)習(xí)“很好”和“較好”總共約多少人?
(3)為了共同進(jìn)步,李老師想從被調(diào)查的A類(lèi)和D類(lèi)學(xué)生中各隨機(jī)選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.(要求列表或樹(shù)狀圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn),,點(diǎn)是軸上點(diǎn)右側(cè)一點(diǎn),以,為兩邊的菱形的頂點(diǎn)落在反比例函數(shù)的圖象上.
(1)求反比例函數(shù)的表達(dá)式;
(2)過(guò)點(diǎn)作軸的垂線,交反比例函數(shù)的圖象于點(diǎn),連接,,求的面積:
(3)當(dāng)時(shí),請(qǐng)直接寫(xiě)出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在中,以的中點(diǎn)為圓心,作半圓與相切,點(diǎn)分別是半圓和邊上的動(dòng)點(diǎn),連接則的最大值與最小值的和是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在正方形中,在上從向運(yùn)動(dòng),連接交于連接.
(1)證明:無(wú)論運(yùn)動(dòng)到上的何處,都有;
(2)當(dāng)運(yùn)動(dòng)到何處時(shí),?
(3)若從到再?gòu)?/span>到,在整個(gè)運(yùn)動(dòng)過(guò)程中,為多少時(shí),是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】上周六上午點(diǎn),小穎同爸爸媽媽一起從西安出發(fā)回安康看望姥姥,途中他們?cè)谝粋(gè)服務(wù)區(qū)休息了半小時(shí),然后直達(dá)姥姥家,如圖,是小穎一家這次行程中距姥姥家的距離(千米)與他們路途所用的時(shí)間(時(shí))之間的函數(shù)圖象,請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)求直線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)已知小穎一家出服務(wù)區(qū)后,行駛分鐘時(shí),距姥姥家還有千米,問(wèn)小穎一家當(dāng)天幾點(diǎn)到達(dá)姥姥家?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】文具店有三種品牌的6個(gè)筆記本,價(jià)格是4,5,7(單位:元)三種,從中隨機(jī)拿出一個(gè)本,已知(一次拿到7元本).
(1)求這6個(gè)本價(jià)格的眾數(shù).
(2)若琪琪已拿走一個(gè)7元本,嘉嘉準(zhǔn)備從剩余5個(gè)本中隨機(jī)拿一個(gè)本.
①所剩的5個(gè)本價(jià)格的中位數(shù)與原來(lái)6個(gè)本價(jià)格的中位數(shù)是否相同?并簡(jiǎn)要說(shuō)明理由;
②嘉嘉先隨機(jī)拿出一個(gè)本后不放回,之后又隨機(jī)從剩余的本中拿一個(gè)本,用列表法求嘉嘉兩次都拿到7元本的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校準(zhǔn)備組織一次“研學(xué)之旅”活動(dòng),現(xiàn)用抽簽的方式從以下四個(gè)地方:九峰公園、柑橘博覽園、平田桐樹(shù)坑、長(zhǎng)潭水庫(kù)(其中九峰公園、平田桐樹(shù)坑是愛(ài)國(guó)主義教育基地)中確定兩個(gè)作為活動(dòng)地點(diǎn).將四個(gè)地點(diǎn)分別寫(xiě)在4張完全相同的卡片上,背面朝上并洗勻,先從中隨機(jī)抽取一張卡片,再?gòu)氖O碌目ㄆ须S機(jī)抽取一張.則“抽中的兩個(gè)地方都是愛(ài)國(guó)主義教育基地”的概率為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,某校組織了“古詩(shī)詞”知識(shí)競(jìng)賽,由九年級(jí)的若干名學(xué)生參加選拔賽,從中選出10名優(yōu)勝者,下面是對(duì)參賽學(xué)生成績(jī)的不完整統(tǒng)計(jì).
(1)統(tǒng)計(jì)表中,=_____;各組人數(shù)的中位數(shù)是_____;統(tǒng)計(jì)圖中,組所在扇形的圓心角是_____°;
(2)李明同學(xué)得了88分,他說(shuō)自己在參加選拔賽的同學(xué)中屬于中午偏上水平,你認(rèn)為他說(shuō)的有道理嗎?為什么?
(3)選出的10名優(yōu)勝者中,男生、女生的分布情況如下表.
一班 | 二班 | 三班 | 四班 | 五班 | 六班 | |
男生人數(shù) | 1 | 1 | 2 | 1 | 0 | 0 |
女生人數(shù) | 1 | 0 | 0 | 2 | 1 | 1 |
若從中任選1名男生和1名女生代表學(xué)校參加全區(qū)的比賽,請(qǐng)有列表法或畫(huà)樹(shù)狀圖法求男生和女生都出在四班的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com