【題目】如圖,為了測量建筑物CDEF的高度,在直線CE上選取觀測點A、B,AC的距離為40米.從A、B測得建筑物的頂部D的仰角分別為51.34°、68.20°,從B、D測得建筑物的頂部F的仰角分別為64.43°、26.57°

1)求建筑物CD的高度;

2)求建筑物EF的高度.

(參考數(shù)據(jù):tan51.34°1.25,tan68.20°2.5,tan64.43°2,tan26.57°0.5

【答案】1)建筑物CD的高度為50米;(2)建筑物EF的高度為80米.

【解析】

1)在RtACD中,∠ACD90°,tanDAC,即可得到結(jié)果;

2)過點DDGEF于點G 證明四邊形DCEG是矩形,得到CDEG50,DGCE,根據(jù)RtDFG可求出DG,根據(jù)RtFBE求出BE,即可得到結(jié)果.

解:(1)在RtACD中,∠ACD90°,

tanDAC,

CDAC·tan51.34°40×1.2550

2)過點DDGEF于點G

RtBCD中,∠BCD90°,

tanDBC

BC

根據(jù),,,可得四邊形DCEG是矩形,

CDEG50DGCE

設(shè)EFx米.

RtDFG中,∠DGF90°,

tanFDG,

DG,

RtFBE中,∠BEF90°

tanFBE,

BE

20,

x80

答:建筑物CD的高度為50米,建筑物EF的高度為80米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,對角線,交于點,雙曲線經(jīng)過,兩點若的面積為,則的值是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某圖書館計劃選購甲、乙兩種圖書已知甲圖書每本價格是乙圖書每本價格的倍,用元單獨購買甲圖書比用元單獨購買乙圖書要少本.

1)甲、乙兩種圖書每本價格分別為多少元?

2)如果該圖書館計劃購買乙圖書的本數(shù)比購買甲圖書本數(shù)的倍少本,且用于購買甲、乙兩種圖書的總經(jīng)費不超過元,那么該圖書館最多可以購買多少本乙圖書?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個大小不同的三角板放在同一平面內(nèi),直角頂點重合于點,點上,交于點,若,,則_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PQPB、QCO的切線,切點分別為A、BC,點D上,若D100°,則PQ的度數(shù)之和是(

A.160°B.140°C.120°D.100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的三個函數(shù)圖象中,有兩個函數(shù)圖象能近似地刻畫如下ab兩個數(shù)學(xué)問題:

問題a:矩形面積為4,它的長y與寬x之間的函數(shù)關(guān)系;

問題b:矩形周長為8,它的長y與寬x之間的函數(shù)關(guān)系.

1)問題a,b所對應(yīng)的函數(shù)圖象分別為   ,(填寫序號);

2)請你把剩下的函數(shù)圖象寫出一個適合的數(shù)學(xué)問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,給出下列說法:

;②方程的根為、;③若直線的圖象相交于,,兩點則、、的大小關(guān)系是;④當時,;⑤,

其中正確的說法有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了維護國家主權(quán)和海洋權(quán)力,海監(jiān)部門對我國領(lǐng)海實現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務(wù)的海監(jiān)船以每小時50海里的速度向正東方航行,在處測得燈塔在北偏東方向上,繼續(xù)航行1小時到達處,此時測得燈塔在北偏東方向上.

(1)求的度數(shù);

(2)已知在燈塔的周圍25海里內(nèi)有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠A=90°,點D在線段BC上,∠EDB=C,BEDE,垂足為E,DEAB相交于點F

探究:當AB=ACCD兩點重合時(如圖1)探究:

1)線段BEFD之間的數(shù)量關(guān)系,直接寫出結(jié)果 ;

2)∠EBF=

證明:當AB=ACC,D不重合時,探究線段BEFD的數(shù)量關(guān)系,并加以證明.

計算:當AB=AC時,如圖,求的值 (用含的式子表示).

查看答案和解析>>

同步練習(xí)冊答案