【題目】“綠水青山,就是金山銀山”。某旅游景區(qū)為了保護環(huán)境,需購買、兩種型號的垃圾處理設(shè)備共臺。已知每臺型設(shè)備日處理能力為噸;每臺型設(shè)備日處理能力為噸。根據(jù)實際情況,要求型設(shè)備不多于型設(shè)備的倍,且購回的設(shè)備日處理能力不低于噸。請你為該景區(qū)設(shè)計購買、設(shè)備的方案。
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣5,0),對稱軸為直線x=﹣2,給出四個結(jié)論:①b2>4ac;②4a+b=0;③函數(shù)圖象與x軸的另一個交點為(2,0);④若點(﹣4,y1)、(﹣1,y2)為函數(shù)圖象上的兩點,則y1<y2 . 其中正確結(jié)論是( )
A.②④
B.①④
C.①③
D.②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀后填空:某家燈具廠為了比較甲、乙兩種燈的使用壽命,各抽出8支做試驗,結(jié)果如下(單位:小時).
甲:457,438,460,443,464,459,444,451;
乙:466,455,467,439,459,452,464,438.
試說明哪種燈的使用壽命長?哪種燈的質(zhì)量比較穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形ABCD的邊AD在x軸上,點C在y軸的負半軸上,直線BC∥AD,且BC=3,OD=2,將經(jīng)過A、B兩點的直線l:y=﹣2x﹣10向右平移,平移后的直線與x軸交于點E,與直線BC交于點F,設(shè)AE的長為t(t≥0).
(1)四邊形ABCD的面積為 ;(提示:小學已學過梯形面積計算方法)
(2)設(shè)四邊形ABCD被直線l掃過的面積(陰影部分)為S,請寫出S關(guān)于t的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中,正確的個數(shù)是 ( )
①若三條線段的比為1:1:,則它們組成一個等腰直角三角形;②兩條對角線相等的平行四邊形是矩形;③對角線互相垂直的四邊形是菱形;④有兩個角相等的梯形是等腰梯形;⑤一條直線與矩形的一組對邊相交,必分矩形為兩個直角梯形。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的證明過程:
如圖所示,直線AD與AB,CD分別相交于點A,D,與EC,BF分別相交于點H,G,已知∠1=∠2,∠B=∠C.
求證:∠A=∠D.
證明:∵∠1=∠2,(已知)∠2=∠AGB( )
∴∠1= ( )
∴EC∥BF( )
∴∠B=∠AEC( )
又∵∠B=∠C(已知)
∴∠AEC= ( )
∴ ( )
∴∠A=∠D( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在四邊形ABCD中,AD∥BC,且BC=12cm,AD=18cm,P、Q分別從A、C同時出發(fā),P以2cm/s的速度由A向D運動,Q以4cm/s的速度由C向B運動,問當多少秒時,直線QP將四邊形ABCD截出一個平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com