【題目】在標(biāo)有平行四邊形、矩形、菱形、正方形、等腰梯形、直角梯形的六張形狀、大小完全相等的紙片中,連續(xù)抽取其中兩張紙片,被抽中的(所對(duì)應(yīng)的圖形)恰好是軸對(duì)稱的概率是___________.
【答案】
【解析】
列表或畫樹(shù)狀圖,從中得到連續(xù)抽取兩張紙片的所有結(jié)果數(shù)和符合條件的結(jié)果數(shù),然后利用概率公式計(jì)算即可.
∵矩形、菱形、正方形、等腰梯形是軸對(duì)稱圖形
∴設(shè)平行四邊形、矩形、菱形、正方形、等腰梯形、直角梯形分別為A、B、C、D、E、F,
列表:
A | B | C | D | E | F | |
A | ╳ | AB | AC | AD | AE | AF |
B | BA | ╳ | BC | BD | BE | BF |
C | CA | CB | ╳ | CD | CE | CF |
D | DA | DB | DC | ╳ | DE | DF |
E | EA | EB | EC | ED | ╳ | EF |
F | FA | FB | FC | FD | FE | ╳ |
由表可知,連續(xù)抽取兩張紙片的所有結(jié)果數(shù)為30,其中被抽中的(所對(duì)應(yīng)的圖形)恰好是軸對(duì)稱的結(jié)果數(shù)為12,所以其中被抽中的(所對(duì)應(yīng)的圖形)恰好是軸對(duì)稱的概率為,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“食品安全”受到全社會(huì)的廣泛關(guān)注,武漢市某中學(xué)對(duì)部分學(xué)生就食品安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:
(1)接受問(wèn)卷調(diào)查的學(xué)生共有 人,扇形統(tǒng)計(jì)圖中“了解”部分所對(duì)應(yīng)扇形的圓心角為 ;
(2)若從對(duì)食品安全知識(shí)達(dá)到“了解”程度的2個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加食品安全知識(shí)競(jìng)賽,恰好抽到1個(gè)男生和1個(gè)女生的概率為 ;
(3)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)食品安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系中的點(diǎn)P和圖形M,給出如下定義:Q為圖形M上任意一點(diǎn),如果兩點(diǎn)間的距離有最大值,那么稱這個(gè)最大值為點(diǎn)P與圖形M間的開(kāi)距離,記作.已知直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,的半徑為1.
(1)若,
①求的值;
②若點(diǎn)C在直線上,求的最小值;
(2)以點(diǎn)A為中心,將線段順時(shí)針旋轉(zhuǎn)得到,點(diǎn)E在線段組成的圖形上,若對(duì)于任意點(diǎn)E,總有,直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將置于平面直角坐標(biāo)系中的三角板AOB繞O點(diǎn)順時(shí)針旋轉(zhuǎn)90°得△A'OB'.已知∠AOB=30°,∠B=90°,AB=1,則B'點(diǎn)的坐標(biāo)為 ( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在筆山銀子巖坡頂處的同一水平面上有一座移動(dòng)信號(hào)發(fā)射塔,
筆山職中數(shù)學(xué)興趣小組的同學(xué)在斜坡底處測(cè)得該塔的塔頂的仰角為,然后他們沿著坡度為的斜坡攀行了米,在坡頂處又測(cè)得該塔的塔頂的仰角為.求:
坡頂到地面的距離;
移動(dòng)信號(hào)發(fā)射塔的高度(結(jié)果精確到米).
(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,將直角的頂點(diǎn)E放在正方形ABCD的對(duì)角線AC上,使角的一邊交CD于點(diǎn)F,另一邊交CB或其延長(zhǎng)線于點(diǎn)G,求的值;
(2)如圖,將(1)中的“正方形ABCD”改成“矩形ABCD”,其他條件不變.若AB=m,BC=n,試求的值;
(3)如圖,將直角頂點(diǎn)E放在矩形ABCD的對(duì)角線交點(diǎn),EF、EG分別交CD與CB于點(diǎn)F、G,且EC平分∠FEG.若AB=2,BC=4,直接寫出EG、EF 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線的頂點(diǎn)為,與軸的一個(gè)交點(diǎn)在點(diǎn)和之間,其部分圖象如圖所示,則以下結(jié)論:①;②;③;④方程以有兩個(gè)的實(shí)根,其中正確的個(gè)數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對(duì)某地互聯(lián)網(wǎng)行業(yè)從業(yè)情況進(jìn)行調(diào)查統(tǒng)計(jì),得到當(dāng)?shù)鼗ヂ?lián)網(wǎng)行業(yè)從業(yè)人員年齡分布統(tǒng)計(jì)圖和當(dāng)?shù)?/span>90后從事互聯(lián)網(wǎng)行業(yè)崗位分布統(tǒng)計(jì)圖:
互聯(lián)網(wǎng)行業(yè)從業(yè)人員年齡分布統(tǒng)計(jì)圖 90后從事互聯(lián)網(wǎng)行業(yè)崗位分布圖
對(duì)于以下四種說(shuō)法,你認(rèn)為正確的是_____ (寫出全部正確說(shuō)法的序號(hào)).
①在當(dāng)?shù)鼗ヂ?lián)網(wǎng)行業(yè)從業(yè)人員中,90后人數(shù)占總?cè)藬?shù)的一半以上
②在當(dāng)?shù)鼗ヂ?lián)網(wǎng)行業(yè)從業(yè)人員中,80前人數(shù)占總?cè)藬?shù)的13%
③在當(dāng)?shù)鼗ヂ?lián)網(wǎng)行業(yè)中,從事技術(shù)崗位的90后人數(shù)超過(guò)總?cè)藬?shù)的20%
④在當(dāng)?shù)鼗ヂ?lián)網(wǎng)行業(yè)中,從事設(shè)計(jì)崗位的90后人數(shù)比80前人數(shù)少
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn),將點(diǎn)向右平移6個(gè)單位,得到點(diǎn).
(1)直接寫出點(diǎn)的坐標(biāo);
(2)若拋物線經(jīng)過(guò)點(diǎn),,求該拋物線的表達(dá)式;
(3)若拋物線的頂點(diǎn)在直線上移動(dòng),當(dāng)拋物線與線段有且只有一個(gè)公共點(diǎn)時(shí),求拋物線頂點(diǎn)橫坐標(biāo)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com