【題目】小明在學(xué)了尺規(guī)作圖后,通過三弧法作了一個(gè)ACD,其作法步驟是:①作線段AB,分別以A,B為圓心,AB長為半徑畫弧,兩弧的交點(diǎn)為C;②以B為圓心,AB長為半徑畫弧交AB的延長線于點(diǎn)D;③連結(jié)AC,BC,CD.下列說法不正確的是( 。

A.A60°B.ACD是直角三角形

C.BCCDD.點(diǎn)BACD的外心

【答案】C

【解析】

根據(jù)等邊三角形的判定和性質(zhì),直角三角形的判定和性質(zhì),三角形的外心等知識(shí)一一判斷即可.

解:由作圖可知:AB=BC=AC,
∴△ABC是等邊三角形,
∴∠A=60°,(故A正確)
BA=BC=BD,
∴△ACD是直角三角形,(故B正確),點(diǎn)B△ACD的外心.(故D正確);

∴tanA==,

∴AC=,

∴BC=,(故C錯(cuò)誤)

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在的正三角形的網(wǎng)格中,的三個(gè)頂點(diǎn)都在格點(diǎn)上.請按要求畫圖和計(jì)算:①僅用無刻度直尺;②保留作圖痕跡.

1)在圖1中,畫出邊上的中線

2)在圖2中,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣2x+4x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與雙曲線yx0)交于C、D兩點(diǎn),且∠AOC=∠ADO,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)黑布袋,布袋中有四個(gè)除標(biāo)號(hào)外完全相同的小球,小球上分別標(biāo)有數(shù)字布袋中有三個(gè)除標(biāo)號(hào)外完全相同的小球,小球上分別標(biāo)有數(shù)字小明先從布袋中隨機(jī)取出一個(gè)小球,用表示取出的球上標(biāo)有的數(shù)字,再從布袋中隨機(jī)取出一個(gè)小球,用來表示取出的球上標(biāo)有的數(shù)字.

1)若用表示小明取球時(shí)的對應(yīng)值,請畫出樹狀圖,并寫出的所有取值;

2)求關(guān)于的一元二次方程有實(shí)數(shù)根的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,點(diǎn)D是邊BC上一動(dòng)點(diǎn)(不與BC重合),∠ADE=∠B=α,DEAC于點(diǎn)E,且cosα=.下列結(jié)論:①△ADE∽△ACD;當(dāng)BD=6時(shí),△ABD△DCE全等;③△DCE為直角三角形時(shí),BD8;④0<CE≤6.4.其中正確的結(jié)論是________.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線ADBC于點(diǎn)D,過點(diǎn)DDEADAB于點(diǎn)E,以AE為直徑作O

1)求證:直線BCO的切線;

2)若∠ABC=30°,O的直徑為4,求陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtACBRtAEF中,∠ACB=∠AEF90°,若點(diǎn)PBF的中點(diǎn),連接PCPE

(1) 如圖1,若點(diǎn)E,F分別落在邊AB,AC上,求證:PCPE;

(2) 如圖2,把圖1中的△AEF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E落在邊CA的延長線上時(shí),探索PCPE的數(shù)量關(guān)系,并說明理由.

(3) 如圖3,把圖2中的△AEF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),點(diǎn)F落在邊AB上.其他條件不變,問題(2)中的結(jié)論是否發(fā)生變化?如果不變,請加以證明;如果變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐

RtABC中,∠ACB90°,點(diǎn)D為斜邊AB上的動(dòng)點(diǎn)(不與點(diǎn)A,B重合).

1)操作發(fā)現(xiàn):如圖,當(dāng)ACBC8時(shí),把線段CD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到線段CE,連接DEBE

CBE的度數(shù)為   ;

當(dāng)BE   時(shí),四邊形CDBE為正方形;

2)探究證明:如圖,當(dāng)BC2AC時(shí),把線段CD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°后并延長為原來的兩倍,記為線段CE,連接DE,BE

在點(diǎn)D的運(yùn)動(dòng)過程中,請判斷∠CBE與∠A的大小關(guān)系,并證明;

當(dāng)CDAB時(shí),求證:四邊形CDBE為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰RtABP的斜邊AB=2,點(diǎn)M、N在斜邊AB上.若PMN是等腰三角形且底角正切值為2,則MN_________

查看答案和解析>>

同步練習(xí)冊答案