【題目】如圖,在中,,,,,分別是邊,上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)以每秒2個(gè)單位的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng);點(diǎn)以每秒3個(gè)單位的速度由點(diǎn)到點(diǎn)再到點(diǎn)運(yùn)動(dòng);它們同時(shí)出發(fā),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)停止,另一個(gè)點(diǎn)繼續(xù)運(yùn)動(dòng)到終點(diǎn)也停止,設(shè)運(yùn)動(dòng)時(shí)間為秒。
(1)求的面積。
(2)當(dāng)點(diǎn)在邊上運(yùn)動(dòng)時(shí),出發(fā)幾秒后,是等腰三角形。
(3)當(dāng)點(diǎn)在邊上運(yùn)動(dòng)時(shí),出發(fā)幾秒后,是等腰三角形。
【答案】(1);(2)4;(3)當(dāng)秒或11秒或10秒時(shí)為等腰三角形.
【解析】
(1)根據(jù)勾股定理求出AB,然后利用面積公式求解即可;
(2)根據(jù)點(diǎn)在邊上運(yùn)動(dòng)時(shí)是等腰三角形則根據(jù)求出t即可;
(3)分情況當(dāng),與三種情況討論求解即可.
解:(1)∵在中,,,
∴.
∴
(2)當(dāng)在邊上構(gòu)成等腰三角形,此當(dāng)時(shí),即,解得.此時(shí),所以此情況可能.
(3)a.當(dāng)時(shí),如圖所示
,,,,
秒
b.當(dāng)時(shí),如圖
過點(diǎn)作于點(diǎn),
秒.
c.當(dāng)時(shí)15+15=30
秒
綜上所述當(dāng)秒或11秒或10秒時(shí)為等腰三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=2.點(diǎn)P是△ABC內(nèi)部的一個(gè)動(dòng)點(diǎn),且滿足∠PAC=∠PCB,則線段BP長的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的是( ).
A.在一個(gè)角的內(nèi)部(包括頂點(diǎn))到角的兩邊距離相等的點(diǎn)的軌跡是這個(gè)角的平分線
B.到點(diǎn)距離等于的點(diǎn)的軌跡是以點(diǎn)為圓心,半徑長為的圓
C.到直線距離等于的點(diǎn)的軌跡是兩條平行于且與的距離等于的直線
D.等腰三角形的底邊固定,頂點(diǎn)的軌跡是線段的垂直平分線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC三頂點(diǎn)A(﹣5,0)、B(﹣2,4)、C(﹣1,﹣2),△A'B'C'與△ABC關(guān)于y軸對稱.
(1)直接寫出A'、B'、C'的坐標(biāo);
(2)畫出△A'B'C';
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,和的平分線相交于點(diǎn),過點(diǎn)作 交于,交于,過點(diǎn)作于,下列四個(gè)結(jié)論:
①; ②;
③點(diǎn)到各邊的距離相等;
④設(shè),,則.
其中正確的結(jié)論有( )
A.①②④B.①②③C.①③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的內(nèi)心,以O(shè)為圓心,r為半徑的圓與線段AB有交點(diǎn),則r的取值范圍是( )
A.r≥1 B.1≤r≤ C.1≤r≤ D.1≤r≤4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的三倍,則稱這樣的方程為“3倍根方程”,以下說法不正確的是( 。
A. 方程x2﹣4x+3=0是3倍根方程
B. 若關(guān)于x的方程(x﹣3)(mx+n)=0是3倍根方程,則m+n=0
C. 若m+n=0且m≠0,則關(guān)于x的方程(x﹣3)(mx+n)=0是3倍根方程
D. 若3m+n=0且m≠0,則關(guān)于x的方程x2+(m﹣n)x﹣mn=0是3倍根方程
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、C的坐標(biāo)分別為(0,8)、(6,0),以AC為直徑作⊙O,交坐標(biāo)軸于點(diǎn)B,點(diǎn)D是⊙O 上一點(diǎn),且,過點(diǎn)D作DE⊥BC,垂足為E.
(1)求證:CD平分∠ACE;
(2)判斷直線ED與⊙O的位置關(guān)系,并說明理由;
(3)求線段CE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com