【題目】如圖,點(diǎn)A在反比例函數(shù)y=(x>0)圖象上,點(diǎn)B在反比例函數(shù)y=(k>0,x>0)的圖象上,AB∥x軸,BC∥y軸交x軸于點(diǎn)C,連結(jié)AC,交反比例函數(shù)y=(x>0)圖象于點(diǎn)D,若D為AC的中點(diǎn),則k的值是( )
A. 2B. 3C. 4D. 5
【答案】B
【解析】
由反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征用函數(shù)a的代數(shù)式表示出來(lái)b,并找出點(diǎn)C坐標(biāo),根據(jù)D為AC的中點(diǎn)得出d的坐標(biāo),即可得出關(guān)于k的一元一次方程,解方程即可得出結(jié)論;
解:設(shè)A(a,b),
∵A在反比例函數(shù)y=(x>0)的圖象上,
∴b=,
∵AB∥x軸,且點(diǎn)B在反比例函數(shù)y=(k>0,x>0)的圖象上,
∴B(ak,).
∵BC∥y軸,
∴C(ak,0),
又∵D為AC的中點(diǎn),
∴D(,),
∵反比例函數(shù)y=(x>0)圖象于點(diǎn)D,
∴=1,
解得k=3,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)的圖象記作,一次函數(shù)的圖象記作,對(duì)于這兩個(gè)圖象,有以下幾種說(shuō)法:
①當(dāng)與有公共點(diǎn)時(shí),隨增大而減。
②當(dāng)與沒(méi)有公共點(diǎn)時(shí),隨增大而增大;
③當(dāng)時(shí),與平行,且平行線之間的距離為.
下列選項(xiàng)中,描述準(zhǔn)確的是( )
A. ①②正確,③錯(cuò)誤B. ①③正確,②錯(cuò)誤
C. ②③正確,①錯(cuò)誤D. ①②③都正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖△ABC與△ADE中,D在BC上,∠1=∠2=∠3
(1)求證:△ABC∽△ADE;
(2)若AB=4,AD=2,AC=3,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90,AB=3,BC=4,CD=10,DA=,則四邊形ABCD的面積為=____________,BD的長(zhǎng)為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O為等腰△ABC的外接圓,直徑AB=12,P為上任意一點(diǎn)(不與B,C重合),直線CP交AB延長(zhǎng)線于點(diǎn)Q,⊙O在點(diǎn)P處切線PD交BQ于點(diǎn)D,下列結(jié)論:①若∠PAB=30°,則的長(zhǎng)為π;②若PD∥BC,則AP平分∠CAB;③若PB=BD,則PD=6;④無(wú)論點(diǎn)P在上的位置如何變化,CPCQ為定值.其中正確的是________________.(寫出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A在x軸正半軸上,頂點(diǎn)C在y軸正半軸上,點(diǎn)B的坐標(biāo)為(4,m)(5≤m≤7),反比例函數(shù)y=(x>0)的圖象交邊AB于點(diǎn)D.
(1)用m的代數(shù)式表示BD的長(zhǎng);
(2)設(shè)點(diǎn)P在該函數(shù)圖象上,且它的橫坐標(biāo)為m,連結(jié)PB,PD
①記矩形OABC面積與△PBD面積之差為S,求當(dāng)m為何值時(shí),S取到最大值;
②將點(diǎn)D繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn)E,當(dāng)點(diǎn)E恰好落在x軸上時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,△ABC內(nèi)接于⊙O,AB為直徑,∠CBA的平分線交AC于點(diǎn)F,交⊙O于點(diǎn)D,DE⊥AB于點(diǎn)E,且交AC于點(diǎn)P,連結(jié)AD.
(1)求證:∠DAC=∠DBA;
(2)求證:P是線段AF的中點(diǎn);
(3)連接CD,若CD﹦3,BD﹦4,求⊙O的半徑和DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知菱形在平面直角坐標(biāo)系的位置如圖所示,,,,點(diǎn)是對(duì)角線上的一個(gè)動(dòng)點(diǎn),,當(dāng)周長(zhǎng)最小時(shí),點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為2的正方形ABCD關(guān)于y軸對(duì)稱,邊AD在x軸上,點(diǎn)B在第四象限,直線BD與反比例函數(shù)的圖象交于點(diǎn)B、E.
(1)求反比例函數(shù)及直線BD的解析式;
(2)求點(diǎn)E的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com