【題目】一次函數(shù)的圖象記作,一次函數(shù)的圖象記作,對于這兩個圖象,有以下幾種說法:

①當(dāng)有公共點時,增大而減。

②當(dāng)沒有公共點時,增大而增大;

③當(dāng)時,平行,且平行線之間的距離為.

下列選項中,描述準(zhǔn)確的是(

A. ①②正確,③錯誤B. ①③正確,②錯誤

C. ②③正確,①錯誤D. ①②③都正確

【答案】D

【解析】

畫圖,找出G2的臨界點,以及G1的臨界直線,分析出G1過定點,根據(jù)k的正負(fù)與函數(shù)增減變化的關(guān)系,結(jié)合函數(shù)圖象逐個選項分析即可解答.

解:

一次函數(shù)y2=2x+3-1x2)的函數(shù)值隨x的增大而增大,如圖所示,N-1,2),Q2,7)為G2的兩個臨界點,

易知一次函數(shù)y1=kx+1-2kk0)的圖象過定點M21),

直線MN與直線MQG1G2有公共點的兩條臨界直線,從而當(dāng)G1G2有公共點時,y1x增大而減小,故①正確;

當(dāng)G1G2沒有公共點時,分三種情況:

一是直線MN,但此時k=0,不符合要求;

二是直線MQ,但此時k不存在,與一次函數(shù)定義不符,故MQ不符合題意;

三是當(dāng)k0時,此時y1x增大而增大,符合題意,故②正確;

當(dāng)k=2時,G1G2平行正確,過點MMPNQ,則MN=3,由y2=2x+3,且MNx軸,可知,tanPNM=2

PM=2PN,

由勾股定理得:PN2+PM2=MN2,

(2PN)2+(PN)2=9

PN=,

PM=,故③正確.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=5,AD=3,動點P在直線AB上方,且滿足SPABS矩形ABCD=13,則使△PAB為直角三角形的點P(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的角平分線, ,延長線上,且,若,則的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)的圖象經(jīng)過點,點與點關(guān)于原點對稱,一次函數(shù)的圖象經(jīng)過點,交反比例函數(shù)圖象于點,連接.

(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;

(2)的面積;

(3)直接寫出當(dāng)時,的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某處有一座信號塔AB,山坡BC的坡度為1,現(xiàn)為了測量塔高AB,測量人員選擇山坡C處為一測量點,測得∠DCA=45°,然后他順山坡向上行走100米到達(dá)E處,再測得∠FEA=60°

1)求出山坡BC的坡角∠BCD的大小;

2)求塔頂ACD的鉛直高度AD.(結(jié)果保留整數(shù):≈1.73,≈1.41

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=∠C40°,點D、點E分別從點B、點C同時出發(fā),在線段BC上作等速運動,到達(dá)C點、B點后運動停止.

1)求證:△ABE≌△ACD;

2)若ABBE,求∠DAE的度數(shù);

拓展:若△ABD的外心在其內(nèi)部時,求∠BDA的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線相交于點O,過點ABD的平行線交CD的延長線于點E

求證: ;

,連接OE,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A是反比例函數(shù)y圖象上一點,過點Ax軸的平行線交反比例函數(shù)y=﹣的圖象于點B,點Cx軸上,且SABC,則k=( 。

A. 6B. 6C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A在反比例函數(shù)yx0)圖象上,點B在反比例函數(shù)yk0,x0)的圖象上,ABx軸,BCy軸交x軸于點C,連結(jié)AC,交反比例函數(shù)yx0)圖象于點D,若DAC的中點,則k的值是( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

同步練習(xí)冊答案