【題目】如圖,直線y=-x+2分別交x軸、y軸于點(diǎn)A,B,點(diǎn)DBA的延長(zhǎng)線上,OD的垂直平分線交線段AB于點(diǎn)C.若OBCOAD的周長(zhǎng)相等,則OD的長(zhǎng)是( )

A. 2B. 2C. D. 4

【答案】B

【解析】

根據(jù)直線解析式可得OAOB長(zhǎng)度,利用勾股定理可得AB長(zhǎng)度,再根據(jù)線段垂直平分線的性質(zhì)以及兩個(gè)三角形周長(zhǎng)線段,可得OD=AB

當(dāng)x=0時(shí),y=2

∴點(diǎn)B0,2

當(dāng)y=0時(shí),-x+2=0

解之:x=2

∴點(diǎn)A2,0

OA=OB=2

∵點(diǎn)C在線段OD的垂直平分線上

OC=CD

∵△OBCOAD的周長(zhǎng)相等,

OB+OC+BC=OA+OD+AD

OB+BC+CD=OA+OD+AD

OB+BD=OA+OD+ADOB+AB+AD=OB+OD+AD

AB=OD

RtAOB

AB=OD=

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A34),點(diǎn)B60).

1)如圖,求AB的長(zhǎng);

2)如圖2,把圖中的ABO繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使O的對(duì)應(yīng)點(diǎn)M恰好落在OA的延長(zhǎng)線上,N是點(diǎn)A旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn);

求證:四邊形AOBN是平行四邊形;

求點(diǎn)N的坐標(biāo).

3)點(diǎn)COB的中點(diǎn),點(diǎn)D為線段OA上的動(dòng)點(diǎn),在ABO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)過程中,點(diǎn)D的對(duì)應(yīng)點(diǎn)是P,求線段CP長(zhǎng)的取值范圍.(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求證:一組對(duì)邊平行且相等的四邊形是平行四邊形.(要求:畫出圖形,寫出已知、求證和證明過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的方格中,OAB 的頂點(diǎn)坐標(biāo)分別為 O0,0)、A(﹣2,﹣1)、B(﹣1,﹣3),O1A1B1 OAB 是以點(diǎn) P 為位似中心的位似圖形

1)位似中心 P 的坐標(biāo)是 O1A1B1OAB 的相似比為 ;

2)以原點(diǎn) O 為位似中心 y 軸的左側(cè)畫出OAB 的另一個(gè)位似三角形,使它與OAB 的相似比為 21,并寫出點(diǎn) B 的對(duì)應(yīng)點(diǎn)的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明騎電動(dòng)車從甲地去乙地,而小剛騎自行車從乙地去甲地,兩人同時(shí)出發(fā)走相同的路線;設(shè)小剛行駛的時(shí)間為xh),兩人之間的距離為ykm),圖中的折線表示yx之間的函數(shù)關(guān)系,點(diǎn)B的坐標(biāo)為(,0).根據(jù)圖象進(jìn)行探究:

1)兩地之間的距離為______km;

2)請(qǐng)解釋圖中點(diǎn)B的實(shí)際意義;

3)求兩人的速度分別是每小時(shí)多少km?

4)直接寫出點(diǎn)C的坐標(biāo)______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊ABC的邊長(zhǎng)是2,D、E分別為AB、AC的中點(diǎn),過點(diǎn)EEFCDBC的延長(zhǎng)線于點(diǎn)F,連接CD

1)求證:DECF;

2)求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形的對(duì)角線相交于點(diǎn),點(diǎn)為邊的中點(diǎn).若菱形的周長(zhǎng)為16,,則的面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測(cè)得旗桿頂端E的俯角α45°,旗桿低端D到大樓前梯坎底邊的距離DC20米,梯坎坡長(zhǎng)BC12米,梯坎坡度i=1: ,則大樓AB的高度為________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:∠AOB=30°,點(diǎn)P是∠AOB 內(nèi)部及射線OB上一點(diǎn),且OP=10cm

1)若點(diǎn)P在射線OB上,過點(diǎn)P作關(guān)于直線OA的對(duì)稱點(diǎn),連接O、P, 如圖①求P的長(zhǎng).

2)若過點(diǎn)P分別作關(guān)于直線OA、直線OB的對(duì)稱點(diǎn)、,連接OO、如圖②, 的長(zhǎng).

3)若點(diǎn)P在∠AOB 內(nèi),分別在射線OA、射線OB找一點(diǎn)M,N,使PMN的周長(zhǎng)取最小值,請(qǐng)直接寫出這個(gè)最小值.如圖③

查看答案和解析>>

同步練習(xí)冊(cè)答案