【題目】小張騎自行車勻速從甲地到乙地,在途中因故停留了一段時間后,仍按原速騎行,小李騎摩托車比小張晚出發(fā)一段時間,以800米/分的速度勻速從乙地到甲地,兩人距離乙地的路程(米)與小張出發(fā)后的時間 (分)之間的函數(shù)圖象如圖所示.
(1)求小張騎自行車的速度;
(2)求小張停留后再出發(fā)時與之間的函數(shù)表達式:.
(3)求小張與小李相遇時的值.
【答案】(1) 小張騎自行車的速度是300米/分;(2) ;(3) 小張與小李相遇時的值是分
【解析】
(1)由圖象看出小張的路程和時間,再根據(jù)速度公式求解即可;
(2)首先求出點B的坐標,利用待定系數(shù)法求解即可;
(3)求小李的函數(shù)解析式,列方程組求解即可.
解: (1) 由題意得:(米/分),
答:小張騎自行車的速度是300米/分;
(2)由小張的速度可知:,
設(shè)直線的解析式為:,
把和代入得:,
解得:,
∴小張停留后再出發(fā)時與之間的函數(shù)表達式:;
(3)小李騎摩托車所用的時間:,
∵, ,
同理得: 的解析式為:,
則,
,
答:小張與小李相遇時的值是分.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1,圖2分別是一滑雪運動員在滑雪過程中某一時刻的實物圖與示意圖,已知運動員的小腿與斜坡垂直,大腿與斜坡平行,且三點共線,若雪仗長為,,,求此刻運動員頭部到斜坡的高度(精確到)(參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,連接AC,O是AC的中點,M是AD上一點,且MD=1,P是BC上一動點,則PM﹣PO的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平行四邊形中,點為邊上一點,過點作于點,
(1)如圖1,連接,若點為中點,,,,求的長.
(2)如圖2,作的平分線交于點,連接,若,為等邊三角形,且,,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果商在今年1月份用2.2萬元購進種水果和種水果共400箱.其中、兩種水果的數(shù)量比為5:3.已知種水果的售價是種水果售價的2倍少10元,預(yù)計當月即可全部售完.
(1)該水果商想通過本次銷售至少盈利8000元,則每箱水果至少賣多少元?
(2)若、兩種水果在(1)的價格銷售,但在實際銷售中,受市場影響,水果的銷量還是下降了,售價下降了;水果的銷量下降了,但售價不變.結(jié)果、兩種水果的銷售總額相等.求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,AD=3,動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點距離之和PA+PB的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,有兩個形狀完全相同的直角三角形ABC和EFG疊放在一起(點A與點E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點.
如圖②,若整個△EFG從圖①的位置出發(fā),以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時,點P從△EFG的頂點G出發(fā),以1cm/s的速度在直角邊GF上向點F運動,當點P到達點F時,點P停止運動,△EFG也隨之停止平移.設(shè)運動時間為x(s),FG的延長線交AC于H,四邊形OAHP的面積為y(cm2)(不考慮點P與G、F重合的情況).
(1)當x為何值時,OP∥AC;
(2)求y與x之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍;
(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說明理由.(參考數(shù)據(jù):1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=1,tanC=,以點A為圓心,AB長為半徑作弧交AC于D,分別以B、D為圓心,以大于BD長為半徑作弧,兩弧交于點E,射線AE與BC于F,過點F作FG⊥AC于G,則FG的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與軸交于點和點,與直線交于點和點,為拋物線的頂點,直線是拋物線的對稱軸.
(1)求拋物線的解析式及點的坐標.
(2)點為直線上方拋物線上一點,設(shè)為點到直線的距離,當有最大值時,求點的坐標.
(3)若點為直線上一點,作點關(guān)于軸的對稱點,連接,,當是直角三角形時,直接寫出點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com