【題目】如圖,四邊形ABCD∠BAD=∠C=90,AB=AD,AE⊥BCE,旋轉(zhuǎn)后能與重合.

(1)旋轉(zhuǎn)中心是哪一點(diǎn)?

(2)旋轉(zhuǎn)了多少度?

(3)若AE=5㎝,求四邊形AECF的面積.

【答案】

1 點(diǎn)A;

2 90

3 25cm2

【解析】

試題(1)旋轉(zhuǎn)中心到對(duì)應(yīng)點(diǎn)的距離相等,因?yàn)?/span>ABAD,AEAF,所以點(diǎn)O是對(duì)稱(chēng)中心.而對(duì)應(yīng)線段AB,AD和夾角∠BAD90°,對(duì)應(yīng)線段AE,AF的夾角∠EAF90°,所以旋轉(zhuǎn)的角度是90°;

2)當(dāng)把△ABE旋轉(zhuǎn)到△ADF的位置后,四邊形ABCD就變化為四邊形AECF,由題意可得到四邊形AECF是正方形,從而由四邊形AECF的面積得到四邊形ABCD的面積.

試題解析:(1)旋轉(zhuǎn)中心是點(diǎn)A,因?yàn)?/span>∠BAD90°,所以旋轉(zhuǎn)了90°.

答:旋轉(zhuǎn)中心是點(diǎn)A,旋轉(zhuǎn)了90°.

2)因?yàn)?/span>△BEA≌△DFA,所以AEAF,∠EAB∠FAD,而∠BAD90°

所以∠EAF90°,又∠AEC90°∠C90°,

所以四邊形AECF是正方形,

因?yàn)?/span>AE5,所以正方形AECF的面積為:5×525 cm2.

又因?yàn)?/span>△BEA≌△DFA,所以四邊形ABCD的面積是25 cm2.

答:四邊形ABCD的面積是25 cm2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)的圖象與x軸、y軸分別交于兩點(diǎn),與反比例函數(shù)的圖象分別交于兩點(diǎn),點(diǎn),

求一次函數(shù)與反比例函數(shù)的解析式;

直接寫(xiě)出時(shí)自變量x的取值范圍.

動(dòng)點(diǎn)y軸上運(yùn)動(dòng),當(dāng)的值最大時(shí),直接寫(xiě)出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是( 。

A. 55° B. 60° C. 65° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為改善交通擁堵?tīng)顩r,我市進(jìn)行了大規(guī)模的道路橋梁建設(shè).已知某路段乙工程隊(duì)單獨(dú)完成所需的天數(shù)是甲工程隊(duì)單獨(dú)完成所需天數(shù)的1.5倍,如果按甲工程隊(duì)單獨(dú)工作20天,再由乙工程隊(duì)單獨(dú)工作30天的方案施工,這樣就完成了此路段的

1)求甲、乙工程隊(duì)單獨(dú)完成這項(xiàng)工程各需多少天?

2)已知甲工程隊(duì)每天的施工費(fèi)用是2萬(wàn)元,乙工程隊(duì)每天的施工費(fèi)用為1.2萬(wàn)元,要使該項(xiàng)目的工程費(fèi)不超過(guò)114萬(wàn)元,則需要改變施工方案,但甲乙兩個(gè)工程隊(duì)不能同時(shí)施工,乙工程隊(duì)最少施工多少天才能完成此項(xiàng)工程?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰直角中,,點(diǎn)上,,連接

(1)的度數(shù);

(2)當(dāng)時(shí),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,己知O為坐標(biāo)原點(diǎn),點(diǎn)A3,0),B0.4),以點(diǎn)A為旋轉(zhuǎn)中心,把△ABO順時(shí)針旋轉(zhuǎn),得△ACD.記旋轉(zhuǎn)角為α∠ABOβ

I )如圖,當(dāng)旋轉(zhuǎn)后點(diǎn)D恰好落在AB邊上時(shí),求點(diǎn)D的坐標(biāo);

II)如圖,當(dāng)旋轉(zhuǎn)后滿(mǎn)足BC∥x軸時(shí),求αβ之間的數(shù)量關(guān)系:

III)當(dāng)旋轉(zhuǎn)后滿(mǎn)足∠AOD=β時(shí),求直線CD的解析式(直接寫(xiě)出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正五邊形ABCDE內(nèi)接于⊙O,過(guò)點(diǎn)A作⊙O的切線交對(duì)角線DB的延長(zhǎng)線于點(diǎn)F,則下列結(jié)論不成立的是( 。

A. AEBD B. AB=BF C. AFCD D. DF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】作圖題:

1)如圖①,已知:.求作:射線,使平分(要求:尺規(guī)作圖,不寫(xiě)作法,但需保留作圖痕跡)

2)題(1)中作圖的依據(jù)是全等三角形判定方法中的__________

3)在圖②中作出,使它與關(guān)于軸對(duì)稱(chēng).

4)在圖②中的軸上找到一點(diǎn),使的周長(zhǎng)最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)P,根據(jù)下列條件,求∠BPC的度數(shù).

(1)若∠ABC=50°,∠ACB=60°,則∠BPC   

(2)若∠ABC+∠ACB=120°,則∠BPC   ;

(3)若∠A=80°,則∠BPC   ;

(4)從以上的計(jì)算中,你能發(fā)現(xiàn)已知∠A,求∠BPC的公式是:∠BPC   (提示:用∠A表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案