【題目】如圖,等腰直角中,,點(diǎn)在上,,連接
(1)求的度數(shù);
(2)當(dāng)時(shí),求的長(zhǎng).
【答案】(1)90°;(2)
【解析】
(1)根據(jù)余角的性質(zhì)得到∠ABP=∠CBQ,根據(jù)全等三角形的性質(zhì)得到∠BCQ=∠A,根據(jù)等腰直角三角形的性質(zhì)即可得到結(jié)論;
(2)過P作PD⊥AB于D,得到△ADP是等腰直角三角形,于是得到AD=PD=AP=1,根據(jù)勾股定理即可得到結(jié)論.
解:(1)∵∠ABC=90°,∠PBQ=90°,
∴∠ABP=90°-∠CBP,∠CBQ=90°-∠CBP,
∴∠ABP=∠CBQ,
∵AB=BC,BP=BQ,
∴△ABP≌△CBQ(SAS),
∴∠BCQ=∠A,
∵△ABC是等腰直角三角形,
∴∠A=∠ACB=45°,
∴∠BCQ=45°,
∴∠PCQ=45°+45°=90°;
(2)過P作PD⊥AB于D,
則△ADP是等腰直角三角形,
∴AD=PD=AP=1,
∵AB=4,
∴BD=3,
∴PB=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,BC的延長(zhǎng)線于⊙O的切線AF交于點(diǎn)F.
(1)求證:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司投入研發(fā)費(fèi)用80萬元萬元只計(jì)入第一年成本,成功研發(fā)出一種產(chǎn)品公司按訂單生產(chǎn)產(chǎn)量銷售量,第一年該產(chǎn)品正式投產(chǎn)后,生產(chǎn)成本為6元件此產(chǎn)品年銷售量萬件與售價(jià)元件之間滿足函數(shù)關(guān)系式.
求這種產(chǎn)品第一年的利潤(rùn)萬元與售價(jià)元件滿足的函數(shù)關(guān)系式;
該產(chǎn)品第一年的利潤(rùn)為20萬元,那么該產(chǎn)品第一年的售價(jià)是多少?
第二年,該公司將第一年的利潤(rùn)20萬元萬元只計(jì)入第二年成本再次投入研發(fā),使產(chǎn)品的生產(chǎn)成本降為5元件為保持市場(chǎng)占有率,公司規(guī)定第二年產(chǎn)品售價(jià)不超過第一年的售價(jià),另外受產(chǎn)能限制,銷售量無法超過12萬件請(qǐng)計(jì)算該公司第二年的利潤(rùn)至少為多少萬元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)4(x-1)2=100
(2)x2-2x-15=0
(3)3x2-13x-10=0
(4)3(x-3)2+x(x-3)=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的∠BAD=∠C=90,AB=AD,AE⊥BC于E,旋轉(zhuǎn)后能與重合.
(1)旋轉(zhuǎn)中心是哪一點(diǎn)?
(2)旋轉(zhuǎn)了多少度?
(3)若AE=5㎝,求四邊形AECF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計(jì)劃成立下列學(xué)生社團(tuán): A.合唱團(tuán): B.英語俱樂部: C.動(dòng)漫創(chuàng)作社; D.文學(xué)社:E.航模工作室為了解同學(xué)們對(duì)上述學(xué)生社團(tuán)的喜愛情況某課題小組在全校學(xué)生中隨機(jī)抽取了部分同學(xué),進(jìn)行“你最喜愛的一個(gè)學(xué)生社團(tuán)”的調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息,解決下列問題:
(1)本次接受調(diào)查的學(xué)生共有多少人;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,扇形統(tǒng)計(jì)圖中D選項(xiàng)所對(duì)應(yīng)扇形的圓心角為多少;
(3)若該學(xué)校共有學(xué)生3000人,估計(jì)該學(xué)校學(xué)生中喜愛合唱團(tuán)和動(dòng)漫創(chuàng)作社的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,AB=9cm,AC=6cm,兩內(nèi)角平分線BO和CO相交于點(diǎn)O.
(1)若∠A=70,求∠BOC的度數(shù).
(2)若直線DE過點(diǎn)O,與AB、AC分別相交于點(diǎn)D、E,且DE//BC,求的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某青春黨支部在精準(zhǔn)扶貧活動(dòng)中,給結(jié)對(duì)幫扶的貧困家庭贈(zèng)送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價(jià)格比甲種樹苗貴10元,用480元購(gòu)買乙種樹苗的棵數(shù)恰好與用360元購(gòu)買甲種樹苗的棵數(shù)相同.
(1)求甲、乙兩種樹苗每棵的價(jià)格各是多少元?
(2)在實(shí)際幫扶中,他們決定再次購(gòu)買甲、乙兩種樹苗共50棵,此時(shí),甲種樹苗的售價(jià)比第一次購(gòu)買時(shí)降低了10%,乙種樹苗的售價(jià)不變,如果再次購(gòu)買兩種樹苗的總費(fèi)用不超過1500元,那么他們最多可購(gòu)買多少棵乙種樹苗?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com