【題目】如圖,正五邊形ABCDE內(nèi)接于⊙O,過點(diǎn)A作⊙O的切線交對角線DB的延長線于點(diǎn)F,則下列結(jié)論不成立的是( 。

A. AEBD B. AB=BF C. AFCD D. DF=

【答案】D

【解析】

根據(jù)平行的判定可得,添加輔助線連接可得答案.

A、五邊形各邊相等,所以CD=BC,也可知各角=108°,所以∠DBA+BAE=180°,所以AEBD ,正確;

B、連接AO,BO,所以∠FAO=90°,又∠AOB = ×360°=108°,AO=BO,所以∠OAB=OBA=54°,所以∠BAF=90°-54°=36°,又∠DBA=CBA-(180°-BCD)×=72°,所以∠F=72°-36°=36°,所以AB=BF,正確;

C、由BAB=BF,所以BF=AE,又BFAE,所以四邊形AEBF為平行四邊形,所以BEAF,又有ACDBE,所以AFCD,正確;

D、設(shè)AB=BF=a,AG=b,連接BG,使∠BGF=72°,此時(shí)可證ABGAFB,得出 ,a2=b(a+b),得,所以,所以,錯(cuò)誤

所以答案選擇D項(xiàng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】情境觀察:

如圖1,△ABC中,AB=AC,∠BAC=45°,CDAB,AEBC,垂足分別為D、E,CDAE交于點(diǎn)F

①寫出圖1中所有的全等三角形 ;

②線段AF與線段CE的數(shù)量關(guān)系是

問題探究:

如圖2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BACADCD,垂足為DADBC交于點(diǎn)E

求證:AE=2CD

拓展延伸:

如圖3,△ABC中,∠BAC=45°,AB=BC,點(diǎn)DAC上,∠EDC= BAC,DECE,垂足為EDEBC交于點(diǎn)F.求證:DF=2CE

要求:請你寫出輔助線的作法,并在圖3中畫出輔助線,不需要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司投入研發(fā)費(fèi)用80萬元萬元只計(jì)入第一年成本,成功研發(fā)出一種產(chǎn)品公司按訂單生產(chǎn)產(chǎn)量銷售量,第一年該產(chǎn)品正式投產(chǎn)后,生產(chǎn)成本為6此產(chǎn)品年銷售量萬件與售價(jià)之間滿足函數(shù)關(guān)系式

求這種產(chǎn)品第一年的利潤萬元與售價(jià)滿足的函數(shù)關(guān)系式;

該產(chǎn)品第一年的利潤為20萬元,那么該產(chǎn)品第一年的售價(jià)是多少?

第二年,該公司將第一年的利潤20萬元萬元只計(jì)入第二年成本再次投入研發(fā),使產(chǎn)品的生產(chǎn)成本降為5為保持市場占有率,公司規(guī)定第二年產(chǎn)品售價(jià)不超過第一年的售價(jià),另外受產(chǎn)能限制,銷售量無法超過12萬件請計(jì)算該公司第二年的利潤至少為多少萬元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD∠BAD=∠C=90,AB=AD,AE⊥BCE,旋轉(zhuǎn)后能與重合.

(1)旋轉(zhuǎn)中心是哪一點(diǎn)?

(2)旋轉(zhuǎn)了多少度?

(3)若AE=5㎝,求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計(jì)劃成立下列學(xué)生社團(tuán): A.合唱團(tuán): B.英語俱樂部: C.動漫創(chuàng)作社; D.文學(xué)社:E.航模工作室為了解同學(xué)們對上述學(xué)生社團(tuán)的喜愛情況某課題小組在全校學(xué)生中隨機(jī)抽取了部分同學(xué),進(jìn)行你最喜愛的一個(gè)學(xué)生社團(tuán)的調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.

請根據(jù)以上信息,解決下列問題:

(1)本次接受調(diào)查的學(xué)生共有多少人;

(2)補(bǔ)全條形統(tǒng)計(jì)圖,扇形統(tǒng)計(jì)圖中D選項(xiàng)所對應(yīng)扇形的圓心角為多少;

(3)若該學(xué)校共有學(xué)生3000人,估計(jì)該學(xué)校學(xué)生中喜愛合唱團(tuán)和動漫創(chuàng)作社的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線表示三條相互交叉的公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有(

A.一處B.二處C.三處D.四處

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,AB=9cmAC=6cm,兩內(nèi)角平分線BOCO相交于點(diǎn)O

1)若∠A=70,求∠BOC的度數(shù).

2)若直線DE過點(diǎn)O,與AB、AC分別相交于點(diǎn)DE,且DE//BC,求的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國魏晉時(shí)期的數(shù)學(xué)家劉徽創(chuàng)立了割圓術(shù),認(rèn)為圓內(nèi)接正多邊形邊數(shù)無限增加時(shí),周長就越接近圓周長,由此求得了圓周率π的近似值,設(shè)半徑為r的圓內(nèi)接正n邊形的周長為L,圓的直徑為d,如圖所示,當(dāng)n=6時(shí),,那么當(dāng)n=12時(shí),π≈=______.(結(jié)果精確到0.01,參考數(shù)據(jù):sin15°=cos75°≈0.259)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求解方程.

(1)y(y-2)=3y2-1(公式法); (2)(2x-1)2-3(2x-1)+2=0(因式分解法).

查看答案和解析>>

同步練習(xí)冊答案