【題目】如圖在□ABCD,∠ABC的平分線交AD于點E,延長BE交CD的延長線于F.
(1)若∠F=20°,求∠A的度數(shù);
(2)若AB=5,BC=8,CE⊥AD,求□ABCD的面積;
【答案】
(1)
解:∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC=8,CD=AB=5,AB∥CD,
∴∠AEB=∠CBF,∠ABE=∠F=20°,
∵∠ABC的平分線交AD于點E,
∴∠ABE=∠CBF,
∴∠AEB=∠ABE=20°,
∴AE=AB,∠A=(180°-20°-20°)÷2=140°;
(2)
∵AE=AB=5,AD=BC=8,CD=AB=5,
∴DE=AD-AE=3,
∵CE⊥AD,
∴CE=
=4,
∴ABCD的面積=ADCE=8×4=32.
【解析】(1)由平行四邊形的性質(zhì)和已知條件得出∠AEB=∠CBF,∠ABE=∠F=20°,證出∠AEB=∠ABE=20°,由三角形內(nèi)角和定理求出結(jié)果即可;(2)求出DE,由勾股定理求出CE,即可得出結(jié)果.
【考點精析】掌握三角形的內(nèi)角和外角和勾股定理的概念是解答本題的根本,需要知道三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象與x軸、y軸分別相交于點A、B,點P在該函數(shù)的圖象上,P到x軸、y軸的距離分別為、.
(1)當(dāng)P為線段AB的中點時,求的值;
(2)直接寫出的范圍,并求當(dāng)時點P的坐標(biāo);
(3)若在線段AB上存在無數(shù)個P點,使(a為常數(shù)),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F(xiàn)為AB的中點,DE與AB交于點G,EF與AC交于點H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;其中正確結(jié)論的為(請將所有正確的序號都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算。
(1)你發(fā)現(xiàn)了嗎?( )2= × ,( )﹣2= = × = × 由上述計算,我們發(fā)現(xiàn)( )2( )﹣2;
(2)仿照(1),請你通過計算,判斷( )3與( )﹣3之間的關(guān)系.
(3)我們可以發(fā)現(xiàn):( )﹣m( )m(ab≠0)
(4)計算:( )﹣4×( )4 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖中的折線ABC表示某汽車的耗油量y(單位:L/km)與速度x(單位:km/h)之間的函數(shù)關(guān)系(30≤x≤120),已知線段BC表示的函數(shù)關(guān)系中,該汽車的速度每增加1km/h,耗油量增加0.002L/km.
(1)當(dāng)速度為50km/h、100km/h時,該汽車的耗油量分別為 L/km、 L/km.
(2)求線段AB所表示的y與x之間的函數(shù)表達(dá)式.
(3)速度是多少時,該汽車的耗油量最低?最低是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象與x軸、y軸分別交于點A、B,把Rt△AOB繞點A順時針旋轉(zhuǎn)角α(30°<α<180°),得到△AO′B′.
(1)當(dāng)α=60°時,判斷點B是否在直線O′B′上,并說明理由;
(2)連接OO′,設(shè)OO′與AB交于點D,當(dāng)α為何值時,四邊形ADO′B′是平行四邊形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,天平右盤中的每個砝碼的質(zhì)量都是1克,則物體A的質(zhì)量m克的取值范圍表示在數(shù)軸上為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com