【題目】如圖,在等邊△ABC中,AB=6,N為AB上一點,且AN=2,∠BAC的平分線交BC于點D,M是AD上的動點,連結(jié)BM,MN,則BM+MN的最小值是( 。
A. 8 B. 10 C. D. 2
【答案】D
【解析】
要求BM+MN的最小值,需考慮通過作輔助線轉(zhuǎn)化BM,MN的值,從而找出其最小值求解.
連接CN,與AD交于點M.則CN就是BM+MN的最小值.
取BN中點E,連接DE.
∵等邊△ABC的邊長為6,AN=2,
∴BN=AC﹣AN=6﹣2=4,
∴BE=EN=AN=2,
又∵AD是BC邊上的中線,
∴DE是△BCN的中位線,
∴CN=2DE,CN∥DE,
又∵N為AE的中點,
∴M為AD的中點,
∴MN是△ADE的中位線,
∴DE=2MN,
∴CN=2DE=4MN,
∴CM=CN.
在直角△CDM中,CD=BC=3,DM=AD=,
∴CM=,
∴CN=.
∵BM+MN=CN,
∴BM+MN的最小值為2 .
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如下圖, AB∥CD,點E,F分別為AB,CD上一點.
(1) 在AB,CD之間有一點M(點M不在線段EF上),連接ME,MF,試探究∠AEM,∠EMF,∠MFC之間有怎樣的數(shù)量關(guān)系. 請補全圖形,并在圖形下面寫出相應的數(shù)量關(guān)系,選其中一個進行證明.
(2)如下圖,在AB,CD之間有兩點M,N,連接ME,MN,NF,請選擇一個圖形寫出∠AEM,∠EMN,∠MNF,∠NFC 存在的數(shù)量關(guān)系(不需證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于二次函數(shù) 的圖象與性質(zhì),下列說法正確的是( )
A.對稱軸是直線 ,最小值是
B.對稱軸是直線 ,最大值是
C.對稱軸是直線 ,最小值是
D.對稱軸是直線 ,最大值是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點O為直線AB上一點,在直線AB上側(cè)任作一個∠COD,使得∠COD=90°.
(1)如圖1,過點O作射線OE,當OE恰好為∠AOD的角平分線時,請直接寫出∠BOD與∠COE之間的倍數(shù)關(guān)系,即∠BOD= ______ ∠COE(填一個數(shù)字);
(2)如圖2,過點O作射線OE,當OC恰好為∠AOE的角平分線時,另作射線OF,使得OF平分∠COD,求∠FOB+∠EOC的度數(shù);
(3)在(2)的條件下,若∠EOC=3∠EOF,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在10×10的正方形網(wǎng)格中(每個小正方形的邊長都為1個單位),△ABC的三個頂點都在格點上.建立如圖所示的直角坐標系,
(1)請在圖中標出△ABC的外接圓的圓心P的位置,并填寫: 圓心P的坐標:P( , )
(2)將△ABC繞點A逆時針旋轉(zhuǎn)90°得到△ADE,畫出圖形,并求△ABC掃過的圖形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,P,Q分別是BC,AC上的點,作PR⊥AB,PS⊥AC,垂足分別是R,S,若AQ=PQ,PR=PS,下面三個結(jié)淪:①AS=AR:②QP∥AR;③△BRP≌△CSP.其中正確的是( )
A. ①③ B. ②③ C. ①② D. ①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的是一種盛裝葡萄酒的瓶子,現(xiàn)量得瓶塞AB與標簽CD的高度之比為2:3,且瓶子底部DE=AB,點C是BD的中點,又量得AE=300mm,設DE的長為
(1)用含的式于直接表示出AB、BC的長;
(2)求標簽CD的高度。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中,不正確的是( )
A.垂直平分弦的直線經(jīng)過圓心
B.平分弦的直徑一定垂直于弦
C.平行弦所夾的兩條弧相等
D.垂直于弦的直徑必平分弦所對的弧
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com