【題目】如圖,△ABC中,P,Q分別是BC,AC上的點(diǎn),作PR⊥AB,PS⊥AC,垂足分別是R,S,若AQ=PQ,PR=PS,下面三個(gè)結(jié)淪:①AS=AR:②QP∥AR;③△BRP≌△CSP.其中正確的是( )
A. ①③ B. ②③ C. ①② D. ①②③
【答案】C
【解析】
如圖,連接AP,
在Rt△ASP與Rt△ARP中,
∵AP=AP,PS=PR,
∴△ASP≌Rt△ARP(HL),
∴∠QAP=∠RAP,AS=AR(全等三角形對(duì)應(yīng)角和對(duì)應(yīng)邊相等)①正確,
∵AQ=PQ,
∴∠QAP=∠QPA(等邊對(duì)等角),
∴∠RAP=∠QPA,
∴QP∥ AR(內(nèi)錯(cuò)角相等,兩直線平行)②正確,
∵在△BRP與△CSP中,無(wú)法得出除直角和PR=PS外的其它對(duì)應(yīng)角或?qū)?yīng)邊相等,
∴無(wú)法證明△BRP≌△CSP ③錯(cuò)誤;
故正確的有①②.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn)再求值:當(dāng)a=9時(shí),求a+的值,甲乙兩人的解答如下:
甲的解答為:原式=a+=a+(1-a)=1.
乙的解答為:原式=a+=a+(a-1)=2a-1=17.
兩種解答中,_____的解答是錯(cuò)誤的,錯(cuò)誤的原因是當(dāng)a=9時(shí)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(理解新知)
如圖①,已知,在內(nèi)部畫射線,得到三個(gè)角,分別為、、,若這三個(gè)角中有一個(gè)角是另外一個(gè)角的2倍,則稱射線為的“2倍角線”
(1)角的平分線 這個(gè)角的“2倍角線”;(填“是”或“不是”)
(2)若,射線為的“2倍角線”,則 ;
(解決問(wèn)題)
如圖②,已知,射線從出發(fā),以每秒的速度繞點(diǎn)逆時(shí)針旋轉(zhuǎn):射線從出發(fā),以每秒的速度繞點(diǎn)順時(shí)針旋轉(zhuǎn),射線、同時(shí)出發(fā),當(dāng)一條射線回到出發(fā)位置的時(shí)候,整個(gè)運(yùn)動(dòng)隨之停止.設(shè)運(yùn)動(dòng)的時(shí)間為.
(3)當(dāng)射線、旋轉(zhuǎn)到同一條直線上時(shí),求的值;
(4)若、、三條射線中,一條射線恰好是以另外兩條射線為邊的角的“2倍角線”,直接寫出所有可能的的值.(本題中所研究的角都是小于等于的角.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,AB=6,N為AB上一點(diǎn),且AN=2,∠BAC的平分線交BC于點(diǎn)D,M是AD上的動(dòng)點(diǎn),連結(jié)BM,MN,則BM+MN的最小值是( 。
A. 8 B. 10 C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】交警通常根據(jù)剎車后輪滑行的距離來(lái)測(cè)算車輛行駛的速度,所用的經(jīng)驗(yàn)公式是u=16.其中u表示車速(單位:km/h),d表示剎車距離(單位:m),f表示摩擦系數(shù).在一次交通事故中,測(cè)得d=20m,f=1.44,而發(fā)生交通事故的路段限速為80km/h,肇事汽車是否違規(guī)超速行駛?說(shuō)明理由.(參考數(shù)據(jù):≈1.4,≈2.2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形網(wǎng)格中,小正方形的邊長(zhǎng)為1,△ABC的頂點(diǎn)在格點(diǎn)上.
(1)判斷△ABC是否是直角三角形?并說(shuō)明理由.
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角△ABC內(nèi)接于⊙O,點(diǎn)D是直角△ABC斜邊AB上的一點(diǎn),過(guò)點(diǎn)D作AB的垂線交AC于E,過(guò)點(diǎn)C作∠ECP=∠AED,CP交DE的延長(zhǎng)線于點(diǎn)P,連結(jié)PO交⊙O于點(diǎn)F.
(1)求證:PC是⊙O的切線;
(2)若PC=3,PF=1,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4.
(1)若BC=2,求AB的長(zhǎng);
(2)若BC=a,AB=c,求代數(shù)式(c﹣2)2﹣(a+4)2+4(c+2a+3)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,我們把一個(gè)半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),拋物線的解析式為y=(x-1)2-4,AB為半圓的直徑,求這個(gè)“果圓”被y軸截得的弦CD的長(zhǎng) .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com