【題目】如圖所示,在中,以的中點(diǎn)為圓心,作半圓與相切,點(diǎn)分別是半圓和邊上的動(dòng)點(diǎn),連接則的最大值與最小值的和是( )
A.B.C.D.
【答案】D
【解析】
先利用圓的性質(zhì)、點(diǎn)與圓的位置關(guān)系、三角形的三邊關(guān)系定理確認(rèn)AB取得最大值與最小值時(shí),點(diǎn)A、B的位置,再根據(jù)直角三角形的性質(zhì)、平行線的判定與性質(zhì)、中位線定理求解即可得.
如圖1,連接OA、OB,OB交半圓于點(diǎn)C,則
由三角形的三邊關(guān)系定理得:
則當(dāng)三點(diǎn)共線時(shí),AB取得最小值,最小值為BC
又由垂線段最短得:當(dāng)時(shí),OB取得最小值,即AB取得最小值
如圖2,設(shè)與相切于點(diǎn),連接,作于點(diǎn),交于點(diǎn)
則此時(shí)最小,最小值為
點(diǎn)O為EF的中點(diǎn)
為的中位線
半圓與相切于點(diǎn)C
同理可得:為的中位線
的最小值為
由點(diǎn)與圓的位置關(guān)系得:當(dāng)點(diǎn)在邊上,點(diǎn)與點(diǎn)重合時(shí),最大,的最大值是
此時(shí)
則最大值與最小值的和為
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中有兩點(diǎn)A(0,1),B(﹣1,0),動(dòng)點(diǎn)P在反比例函數(shù)y=的圖象上運(yùn)動(dòng),當(dāng)線段PA與線段PB之差的絕對(duì)值最大時(shí),點(diǎn)P的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的直徑,點(diǎn)C是圓O上一點(diǎn),∠CAB=30°,D是直徑AB上一動(dòng)點(diǎn),連接CD并過點(diǎn)D作CD的垂線,與圓O的其中一個(gè)交點(diǎn)記為點(diǎn)E(點(diǎn)E位于直線CD上方或左側(cè)),連接EC.已知AB=6cm,設(shè)A、D兩點(diǎn)間的距離為xcm,C、D兩點(diǎn)間的距離為y1cm,E、C兩點(diǎn)間的距離為y2cm,小雪根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小雪的探究過程:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 5.2 | 4.4 | 3.6 | 3.0 | 2.7 | 2.7 |
|
y2/cm | 5.2 | 4.6 | 4.2 |
| 4.8 | 5.6 | 6.0 |
(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、面圖、測(cè)量,分別得到了y1,y2與x的幾組對(duì)應(yīng)值,請(qǐng)將表格補(bǔ)充完整:(保留一位小數(shù))
(2)在同一平面直角坐標(biāo)系xOy中,y2的圖象如圖所示,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn)(x,y1),(x,y2),并畫出函數(shù)y1的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)∠ECD=60°時(shí),AD的長(zhǎng)度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),拋物線與軸交于點(diǎn),與軸交于點(diǎn),,拋物線的對(duì)稱軸交拋物線于點(diǎn),交軸于點(diǎn),交直線于點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式及其對(duì)稱軸:
(2)點(diǎn)是線段上一點(diǎn),且,求點(diǎn)的坐標(biāo);
(3)若點(diǎn)是拋物線上任意一點(diǎn),點(diǎn)是直線上任意一點(diǎn),點(diǎn)是平面上任意一點(diǎn),是否存在這樣的點(diǎn),,,使得以點(diǎn),,,為頂點(diǎn)的四邊形是正方形,若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】合肥合家福超市為了吸引顧客,設(shè)計(jì)了一種促銷活動(dòng):在三等分的轉(zhuǎn)盤上依次標(biāo)有“合”,“家”,“福”字樣,購物每滿200元可以轉(zhuǎn)動(dòng)轉(zhuǎn)盤1次,轉(zhuǎn)盤停下后,指針?biāo)竻^(qū)域是“福”時(shí),便可得到30元購物券(指針落在分界線上不計(jì)次數(shù),可重新轉(zhuǎn)動(dòng)一次),一個(gè)顧客剛好消費(fèi)400元,并參加促銷活動(dòng),轉(zhuǎn)了2次轉(zhuǎn)盤.
(1)求出該顧客可能獲得購物券的最高金額和最低金額;
(2)請(qǐng)用畫樹狀圖法或列表法求出該顧客獲購物券金額不低于30元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)M、N分別是x軸y軸上的動(dòng)點(diǎn),點(diǎn)P、Q是某個(gè)函數(shù)圖象上的點(diǎn),當(dāng)四邊形MNPQ為正方形時(shí),稱這個(gè)正方形為此函數(shù)的“夢(mèng)幻正方形”例如:如圖1所示,正方形MNPQ是一次函數(shù)y=﹣x+2的其中一個(gè)“夢(mèng)幻正方形”.
(1)若某函數(shù)是y=x+5,求它的圖象的所有“夢(mèng)幻正方形”的邊長(zhǎng);
(2)若某函數(shù)是反比例函數(shù)y=(k<0)(如圖2所示),它的圖象的“夢(mèng)幻正方形”ABCD,D(﹣4,m)(m<4)在反比例函數(shù)圖象上,求m的值及反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,E是BC邊的中點(diǎn), F是CD邊上的一點(diǎn), 且DF=1.若M、N分別是線段AD、AE上的動(dòng)點(diǎn),則MN+MF的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,點(diǎn)D在邊BC上,點(diǎn)E在線段AD上,EF⊥AC于點(diǎn)F,EG⊥EF交AB于點(diǎn)G,若EF=EG,則CD的長(zhǎng)為( )
A.3.6B.4C.4.8D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,BC為⊙O直徑,延長(zhǎng)AC至D,過D作⊙O切線,切點(diǎn)為E,且∠D=90°,連接BE.DE=12,
(1)若CD=4,求⊙O的半徑;
(2)若AD+CD=30,求AC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com