【題目】拋物線y=ax2+bx﹣3與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OB=OC=3OA,求拋物線的解析式( 。
A.y=x2﹣2x﹣3B.y=x2﹣2x+3C.y=x2﹣2x﹣4D.y=x2﹣2x﹣5
【答案】A
【解析】
由拋物線與y軸的交點(diǎn)坐標(biāo)可求OC得長(zhǎng),根據(jù)OB=OC=3OA,進(jìn)而求出OB、OA,得出點(diǎn)A、B坐標(biāo),再用待定系數(shù)法求出函數(shù)的關(guān)系式.
解:在拋物線y=ax2+bx﹣3中,當(dāng)x=0時(shí),y=﹣3,點(diǎn)C(0,﹣3)
∴OC=3,
∵OB=OC=3OA,
∴OB=3,OA=1,
∴A(﹣1,0),B(3,0)
把A(﹣1,0),B(3,0)代入拋物線y=ax2+bx﹣3得:
a﹣b﹣3=0,9a+3b﹣3=0,
解得:a=1,b=﹣2,
∴拋物線的解析式為y=x2﹣2x﹣3,
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程:
(1)4(2x﹣1)2﹣36=0;
(2)x(x﹣3)+x﹣3=0;
(3)3x2﹣1=4x;
(4)(2x﹣3)2﹣5(2x﹣3)+6=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三孔橋橫截面的三個(gè)孔都呈拋物線形,兩個(gè)小孔形狀、大小都相同,正常水位時(shí),大孔水面常度AB=20米,頂點(diǎn)M距水面6米(即MO=6米),小孔水面寬度BC=6米,頂點(diǎn)N距水面4.5米.航管部門設(shè)定警戒水位為正常水位上方2米處借助于圖中的平面直角坐標(biāo)系解答下列問題:
(1)在汛期期間的某天,水位正好達(dá)到警戒水位,有一艘頂部高出水面3米,頂部寬4米的巡邏船要路過此處,請(qǐng)問該巡邏船能否安全通過大孔?并說明理由.
(2)在問題(1)中,同時(shí)橋?qū)γ嬗钟幸凰倚〈瑴?zhǔn)備從小孔迎面通過,小船的船頂高出水面1.5米,頂部寬3米,請(qǐng)問小船能否安全通過小孔?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春季是傳染病多發(fā)的季節(jié),積極預(yù)防傳染病是學(xué)校高度重視的一項(xiàng)工作,為此,某校對(duì)學(xué)生宿舍采取噴灑藥物進(jìn)行消毒.在對(duì)某宿舍進(jìn)行消毒的過程中,先經(jīng)過的集中藥物噴灑,再封閉宿舍,然后打開門窗進(jìn)行通風(fēng),室內(nèi)每立方米空氣中含藥量與藥物在空氣中的持續(xù)時(shí)間之間的函數(shù)關(guān)系,在打開門窗通風(fēng)前分別滿足兩個(gè)一次函數(shù),在通風(fēng)后又成反比例,如圖所示.下面四個(gè)選項(xiàng)中錯(cuò)誤的是( )
A. 經(jīng)過集中噴灑藥物,室內(nèi)空氣中的含藥量最高達(dá)到
B. 室內(nèi)空氣中的含藥量不低于的持續(xù)時(shí)間達(dá)到了
C. 當(dāng)室內(nèi)空氣中的含藥量不低于且持續(xù)時(shí)間不低于35分鐘,才能有效殺滅某種傳染病毒.此次消毒完全有效
D. 當(dāng)室內(nèi)空氣中的含藥量低于時(shí),對(duì)人體才是安全的,所以從室內(nèi)空氣中的含藥量達(dá)到開始,需經(jīng)過后,學(xué)生才能進(jìn)入室內(nèi)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)驗(yàn)數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5小時(shí)內(nèi)其血液中酒精含量y(毫克/百毫升)與時(shí)間x(時(shí))成正比例;1.5小時(shí)后(包括1.5小時(shí))y與x成反比例.根據(jù)圖中提供的信息,解答下列問題:
(1)寫出一般成人喝半斤低度白酒后,y與x之間的函數(shù)關(guān)系式及相應(yīng)的自變量取值范圍;
(2)按國(guó)家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時(shí)屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上21:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖1,拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn).
(1)求拋物線的表達(dá)式;
(2)點(diǎn)是拋物線上異于點(diǎn)的動(dòng)點(diǎn),若的面積與的面積相等,求出點(diǎn)的坐標(biāo);
(3)如圖2,當(dāng)為的中點(diǎn)時(shí),過點(diǎn)作軸,交拋物線于點(diǎn).連接,將沿軸向左平移個(gè)單位長(zhǎng)度(),將平移過程中與重疊部分的面積記為,求與的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨州市新水一橋(如圖1)設(shè)計(jì)靈感來源于市花﹣﹣蘭花,采用蝴蝶蘭斜拉橋方案,設(shè)計(jì)長(zhǎng)度為258米,寬32米,為雙向六車道,2018年4月3日通車.斜拉橋又稱斜張橋,主要由索塔、主梁、斜拉索組成.某座斜拉橋的部分截面圖如圖2所示,索塔AB和斜拉索(圖中只畫出最短的斜拉索DE和最長(zhǎng)的斜拉索AC)均在同一水平面內(nèi),BC在水平橋面上.已知∠ABC=∠DEB=45°,∠ACB=30°,BE=6米,AB=5BD.
(1)求最短的斜拉索DE的長(zhǎng);
(2)求最長(zhǎng)的斜拉索AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在初中階段的函數(shù)學(xué)習(xí)中,我們經(jīng)歷了“確定函數(shù)的表達(dá)式﹣利用函數(shù)圖象研究其性質(zhì)﹣應(yīng)用函數(shù)解決問題”的學(xué)習(xí)過程.在畫函數(shù)圖象時(shí),我們通過描點(diǎn)或平移的方法畫出了一個(gè)陌生函數(shù)的大致圖象,結(jié)合上面經(jīng)歷的學(xué)習(xí)過程,現(xiàn)在來解決下面問題:在函數(shù)y=中,當(dāng)x=0時(shí),y=1;當(dāng)x=2時(shí),y=.
(1)求這函數(shù)的表達(dá)式 ;
(2)在給出的平面直角坐標(biāo)系中畫出這個(gè)函數(shù)的大致圖象并寫出這個(gè)函數(shù)的一條性質(zhì) ;
(3)結(jié)合你所畫的函數(shù)圖象與y=x+的圖象,直接寫出不等式組的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中有,為原點(diǎn),,,將此三角形繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,拋物線過三點(diǎn).
(1)求此拋物線的解析式及頂點(diǎn)的坐標(biāo);
(2)直線與拋物線交于兩點(diǎn),若,求的值;
(3)拋物線的對(duì)稱軸上是否存在一點(diǎn)使得為直角三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com