【題目】隨州市新水一橋(如圖1)設(shè)計(jì)靈感來(lái)源于市花﹣﹣蘭花,采用蝴蝶蘭斜拉橋方案,設(shè)計(jì)長(zhǎng)度為258米,寬32米,為雙向六車道,2018年4月3日通車.斜拉橋又稱斜張橋,主要由索塔、主梁、斜拉索組成.某座斜拉橋的部分截面圖如圖2所示,索塔AB和斜拉索(圖中只畫出最短的斜拉索DE和最長(zhǎng)的斜拉索AC)均在同一水平面內(nèi),BC在水平橋面上.已知∠ABC=∠DEB=45°,∠ACB=30°,BE=6米,AB=5BD.

(1)求最短的斜拉索DE的長(zhǎng);

(2)求最長(zhǎng)的斜拉索AC的長(zhǎng).

【答案】(1)最短的斜拉索DE的長(zhǎng)為3m;(2)最長(zhǎng)的斜拉索AC的長(zhǎng)為30m.

【解析】1)根據(jù)等腰直角三角形的性質(zhì)計(jì)算DE的長(zhǎng);

(2)作AHBCH,如圖2,由于BD=DE=3,則AB=3BD=15,在RtABH中,根據(jù)等腰直角三角形的性質(zhì)可計(jì)算出BH=AH=15,然后在RtACH中利用含30度的直角三角形三邊的關(guān)系即可得到AC的長(zhǎng).

1)∵∠ABC=DEB=45°,

∴△BDE為等腰直角三角形,

DE=BE=×6=3,

答:最短的斜拉索DE的長(zhǎng)為3m;

(2)作AHBCH,如圖2,

BD=DE=3

AB=3BD=5×3=15,

RtABH中,∵∠B=45°,

BH=AH=AB=×15=15,

RtACH中,∵∠C=30°,

AC=2AH=30.

答:最長(zhǎng)的斜拉索AC的長(zhǎng)為30m.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于每個(gè)正整數(shù),設(shè)表示的末位數(shù)字.例如:的末位數(shù)字),的末位數(shù)字),的末位數(shù)字),的值為(

A.4040B.4038C.0D.4042

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)O,過點(diǎn)O作DE//BC,分別交AB,AC于點(diǎn)D,E,若AB=4,AC=3,則△ADE的周長(zhǎng)是_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD=5,BC=CD且BCAB,BD=8.給出以下判斷:

AC垂直平分BD;

四邊形ABCD的面積S=ACBD;

順次連接四邊形ABCD的四邊中點(diǎn)得到的四邊形可能是正方形;

當(dāng)A,B,C,D四點(diǎn)在同一個(gè)圓上時(shí),該圓的半徑為;

ABD沿直線BD對(duì)折,點(diǎn)A落在點(diǎn)E處,連接BE并延長(zhǎng)交CD于點(diǎn)F,當(dāng)BFCD時(shí),點(diǎn)F到直線AB的距離為

其中正確的是_____.(寫出所有正確判斷的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)中學(xué)生體質(zhì)健康綜合評(píng)定成績(jī)?yōu)?/span>x分,滿分為100分.規(guī)定:85x100A級(jí),75x85B級(jí),60x75C級(jí),x60D級(jí).現(xiàn)隨機(jī)抽取福海中學(xué)部分學(xué)生的綜合評(píng)定成績(jī),整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中的信息,解答下列問題:

(1)在這次調(diào)查中,一共抽取了________名學(xué)生,a________%;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)扇形統(tǒng)計(jì)圖中C級(jí)對(duì)應(yīng)的圓心角為________度;

(4)若該校共有2 000名學(xué)生,請(qǐng)你估計(jì)該校D級(jí)學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接“世界華人炎帝故里尋根節(jié)”,某工廠接到一批紀(jì)念品生產(chǎn)訂單,按要求在15天內(nèi)完成,約定這批紀(jì)念品的出廠價(jià)為每件20元,設(shè)第x天(1≤x≤15,且x為整數(shù))每件產(chǎn)品的成本是p元,p與x之間符合一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表:

天數(shù)(x)

1

3

6

10

每件成本p(元)

7.5

8.5

10

12

任務(wù)完成后,統(tǒng)計(jì)發(fā)現(xiàn)工人李師傅第x天生產(chǎn)的產(chǎn)品件數(shù)y(件)與x(天)滿足如下關(guān)系:y=,

設(shè)李師傅第x天創(chuàng)造的產(chǎn)品利潤(rùn)為W元.

(1)直接寫出p與x,W與x之間的函數(shù)關(guān)系式,并注明自變量x的取值范圍:

(2)求李師傅第幾天創(chuàng)造的利潤(rùn)最大?最大利潤(rùn)是多少元?

(3)任務(wù)完成后.統(tǒng)計(jì)發(fā)現(xiàn)平均每個(gè)工人每天創(chuàng)造的利潤(rùn)為299元.工廠制定如下獎(jiǎng)勵(lì)制度:如果一個(gè)工人某天創(chuàng)造的利潤(rùn)超過該平均值,則該工人當(dāng)天可獲得20元獎(jiǎng)金.請(qǐng)計(jì)算李師傅共可獲得多少元獎(jiǎng)金?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新定義:對(duì)于關(guān)于x的一次函數(shù)y=kx+bk≠0),我們稱函數(shù)y=為一次函數(shù)y=kx+b(k≠0)m變函數(shù)(其中m為常數(shù)).

例如:對(duì)于關(guān)于x的一次函數(shù)y=x+43變函數(shù)為y=

(1)關(guān)于x的一次函數(shù)y=-x+12變函數(shù)為,則當(dāng)x=4時(shí),= ;

(2)關(guān)于x的一次函數(shù)y=x+21變函數(shù)為,關(guān)于x的一次函數(shù)y=-x-2-1變函數(shù)為,求函數(shù)和函數(shù)的交點(diǎn)坐標(biāo);

(3)關(guān)于x的一次函數(shù)y=2x+21變函數(shù)為,關(guān)于x的一次函數(shù)y=x-1,的m變函數(shù)為.

①當(dāng)-3≤x≤3時(shí),函數(shù)的取值范圍是 (直接寫出答案):

②若函數(shù)和函數(shù)有且僅有兩個(gè)交點(diǎn),則m的取值范圍是 (直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,對(duì)角線AC,BD交于點(diǎn)0,過點(diǎn)0的直線分別交邊AD,BC于點(diǎn)E,F(xiàn),EF=6.則AE2+BF2的值為(

A. 9 B. 16 C. 18 D. 36

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知互為余角,且平分平分

1)求的度數(shù);

2)如果已知,其他條件不變,則_______度;如果已知,其他條件不變,則_______度;

3)從以上求的過程中,你得出的結(jié)論是__________

查看答案和解析>>

同步練習(xí)冊(cè)答案