【題目】如圖,在平面直角坐標(biāo)系中,直線y1=2x﹣2與雙曲線y2=交于A、C兩點,AB⊥OA交x軸于點B,且OA=AB.
(1)求雙曲線的解析式;
(2)求點C的坐標(biāo),并直接寫出y1<y2時x的取值范圍.
【答案】(1);(2)C(﹣1,﹣4),x的取值范圍是x<﹣1或0<x<2.
【解析】(1)作高線AC,根據(jù)等腰直角三角形的性質(zhì)和點A的坐標(biāo)的特點得:x=2x﹣2,可得A的坐標(biāo),從而得雙曲線的解析式;
(2)聯(lián)立一次函數(shù)和反比例函數(shù)解析式得方程組,解方程組可得點C的坐標(biāo),根據(jù)圖象可得結(jié)論.
(1)∵點A在直線y1=2x﹣2上,
∴設(shè)A(x,2x﹣2),
過A作AC⊥OB于C,
∵AB⊥OA,且OA=AB,
∴OC=BC,
∴AC=OB=OC,
∴x=2x﹣2,
x=2,
∴A(2,2),
∴k=2×2=4,
∴;
(2)∵,解得:,,
∴C(﹣1,﹣4),
由圖象得:y1<y2時x的取值范圍是x<﹣1或0<x<2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知頂點為C(0,﹣3)的拋物線y=ax2+b(a≠0)與x軸交于A,B兩點,直線y=x+m過頂點C和點B.
(1)求m的值;
(2)求函數(shù)y=ax2+b(a≠0)的解析式;
(3)拋物線上是否存在點M,使得∠MCB=15°?若存在,求出點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿直線AE折疊,頂點D恰好落在BC邊上F點處,已知AD=10cm,BF=6cm.
(1)求DE的值;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩個全等的直角三角形ABC和DBE按圖①方式擺放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,點E落在AB上,DE所在直線交AC所在直線于點F.
(1)求證:AF+EF=DE;
(2)若將圖①中的△DBE繞點B按順時針方向旋轉(zhuǎn)角α,且0°<α<60°,其它條件不變,請在圖②中畫出變換后的圖形,并直接寫出你在(1)中猜想的結(jié)論是否仍然成立;
(3)若將圖①中的△DBE繞點B按順時針方向旋轉(zhuǎn)角β,且60°<β<180°,其它條件不變,如圖③.你認(rèn)為(1)中猜想的結(jié)論還成立嗎?若成立,寫出證明過程;若不成立,請寫出AF、EF與DE之間的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知△ABC中,AB=AC=BC=10厘米,M、N分別從點A、點B同時出發(fā),沿三角形的邊運動,已知點M的速度是1厘米/秒的速度,點N的速度是2厘米/秒,當(dāng)點N第一次到達(dá)B點時,M、N同時停止運動.
(1)M、N同時運動幾秒后,M、N兩點重合?
(2)M、N同時運動幾秒后,可得等邊三角形△AMN?
(3)M、N在BC邊上運動時,能否得到以MN為底邊的等腰△AMN,如果存在,請求出此時M、N運動的時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠ACB=90°,點M是斜邊AB的中點,MD∥BC,且MD=CM,DE⊥AB于點E,連結(jié)AD、CD.
(1)求證:△MED∽△BCA;
(2)求證:△AMD≌△CMD;
(3)設(shè)△MDE的面積為S1,四邊形BCMD的面積為S2,當(dāng)S2=S1時,求cos∠ABC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,下列圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的正方形有5個,第(3)個圖形中面積為1的正方形有9個,……按此規(guī)律,則第50個圖形中面積為1的正方形的個數(shù)為( 。
A. 1322 B. 1323 C. 1324 D. 1325
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在數(shù)學(xué)活動課中,小明剪了一張△ABC的紙片,其中∠A=60°,他將△ABC折疊壓平使點A落在點B處,折痕DE,D在AB上,E在AC上.
(1)請作出折痕DE;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)
(2)判斷△ABE的形狀并說明;
(3)若AE=5,△BCE的周長為12,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校要在一塊三角形空地上種植花草,如圖所示,AC=13 米、AB=14 米、BC=15 米, 若線段 CD 是一條引水渠,且點 D 在邊 AB 上.已知水渠的造價每米 150 元.問:點 D 與點 C 距離多遠(yuǎn)時,水渠的造價最低?最低造價是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com