【題目】如圖,已知點(diǎn)E,F(xiàn)分別是ABCD的邊BC,AD上的中點(diǎn),且∠BAC=90°.
(1)求證:四邊形AECF是菱形;
(2)若∠B=30°,BC=10,求菱形AECF面積.

【答案】
(1)證明:∵四邊形ABCD是平行四邊形,

∴AD=BC,

在Rt△ABC中,∠BAC=90°,點(diǎn)E是BC邊的中點(diǎn),

∴AE= BC=CE,

同理,AF= AD=CF,

∴AE=CE=AF=CF,

∴四邊形AECF是菱形


(2)解:連接EF交AC于點(diǎn)O,如圖所示:

在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,

∴AC= BC=5,AB= AC=5 ,

∵四邊形AECF是菱形,

∴AC⊥EF,OA=OC,

∴OE是△ABC的中位線(xiàn),

∴OE= AB= ,

∴EF=5 ,

∴菱形AECF的面積= ACEF= ×5×5 =


【解析】(1)由平行四邊形的性質(zhì)得出AD=BC,由直角三角形斜邊上的中線(xiàn)性質(zhì)得出AE= BC=CE,AF= AD=CF,得出AE=CE=AF=CF,即可得出結(jié)論;(2)連接EF交AC于點(diǎn)O,解直角三角形求出AC、AB,由三角形中位線(xiàn)定理求出OE,得出EF,菱形AECF的面積= ACEF,即可得出結(jié)果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛出租車(chē)從A地出發(fā),在一條東西走向的街道上往返,每次行駛的情況(記向東為正)記錄如下(x>5x<14,單位:m):

行駛次數(shù)

第一次

第二次

第三次

第四次

行駛情況

x

x

x﹣3

2(5﹣x)

行駛方向(填西”)

   

   

   

   

(1)請(qǐng)將表格補(bǔ)充完整;

(2)求經(jīng)過(guò)連續(xù)4次行駛后,這輛出租車(chē)所在的位置;

(3)若出租車(chē)行駛的總路程為41m,求第一次行駛的路程x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先閱讀下列解題過(guò)程,然后回答問(wèn)題:

解方程:

解:①當(dāng)≥0時(shí),原方程可化為: ,解得

②當(dāng)<0時(shí),原方程可化為: ,解得;

所以原方程的解是

(1)解方程:

(2)探究:當(dāng)為何值時(shí),方程 ①無(wú)解;②只有一個(gè)解;③有兩個(gè)解。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,∠MON=45°,OA1=1,作正方形A1B1C1A2 , 周長(zhǎng)記作C1;再作第二個(gè)正方形A2B2C2A3 , 周長(zhǎng)記作C2;繼續(xù)作第三個(gè)正方形A3B3C3A4 , 周長(zhǎng)記作C3;點(diǎn)A1、A2、A3、A4…在射線(xiàn)ON上,點(diǎn)B1、B2、B3、B4…在射線(xiàn)OM上,…依此類(lèi)推,則第n個(gè)正方形的周長(zhǎng)Cn=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列變形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=兩邊同除以,得x=1;

③由方程6x﹣4=x+4移項(xiàng),得7x=0;

④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).

錯(cuò)誤變形的個(gè)數(shù)是(  )個(gè)

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,將沿直線(xiàn)BC方向平移的位置,GDE上一點(diǎn),連接AG,過(guò)點(diǎn)A、D作直線(xiàn)MN

(1)求證:;

(2)若,判斷AGDE的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠ABC=50°,BD平分∠ABC,過(guò)DDEABBC于點(diǎn)E,若點(diǎn)FAB上,且滿(mǎn)足DF=DE,則∠DFB的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AC為對(duì)角線(xiàn),EAB上一點(diǎn),過(guò)點(diǎn)E,與AC、DC分別交于點(diǎn)CG的中點(diǎn),連結(jié)DE、EH、DH下列結(jié)論: ; ; ; ,則其中結(jié)論正確的有

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABCD中,E是CA延長(zhǎng)線(xiàn)上的點(diǎn),F(xiàn)是AC延長(zhǎng)線(xiàn)上的點(diǎn),且AE=CF.求證:

(1)△ABE≌△CDF;

(2)BE∥DF.

查看答案和解析>>

同步練習(xí)冊(cè)答案