【題目】如圖所示,將沿直線BC方向平移的位置,GDE上一點(diǎn),連接AG,過點(diǎn)A、D作直線MN

(1)求證:;

(2)若,,判斷AGDE的位置關(guān)系,并證明你的結(jié)論.

【答案】(1)見解析;(2)見解析.

【解析】(1)利用平移的性質(zhì)得到ABDE平行且相等,得到四邊形ABED為平行四邊形,利用平行四邊形的性質(zhì)得到對(duì)角相等,利用外角性質(zhì)即可得證;

(2)AG垂直與DE,理由為:由平移的性質(zhì)得到∠EDF=BAC,根據(jù)∠EDF=DAG,等量代換得到∠BAC=DAG,由ABDE平行,利用兩直線平行同旁內(nèi)角互補(bǔ)得到一對(duì)角互補(bǔ),等量代換得到∠ABC=CAG,利用等式的性質(zhì)及平行線的性質(zhì)即可得證.

1)由平移的性質(zhì)得:ABC≌△DEF,

AB=DE,ABDE,

∴四邊形ABED為平行四邊形,

ADBF,ADG=ABC,

∴∠ADG=DEF,

∴∠ABC=DEF=ADG,

∵∠AGEADG的外角,

∴∠AGE=DAG+ADG=GAD+ABC;

(2)AGDE,理由為:

由平移的性質(zhì)得到∠EDF=BAC,

∵∠EDF=DAG,

∴∠BAC=DAG,

ABDE,

∴∠ABC+BEG=180°,

∵∠CAG+CEG=180°,

∴∠ABC=CAG,

MNBC,∴∠ABC=MAB,

∴∠MAB=CAG,

∵∠MAB+BAC+CAG+DAG=180°,

∴∠CAG+BAC=90°,即∠BAG=90°,

ABDE,

∴∠BAG+AGD=90°,

AGDE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著我市社會(huì)經(jīng)濟(jì)的發(fā)展和交通狀況的改善,我市的旅游業(yè)得到了高速發(fā)展某旅游公司對(duì)我市一企業(yè)個(gè)人旅游年消費(fèi)情況進(jìn)行問卷調(diào)查隨機(jī)抽取部分員工,記錄每個(gè)人年消費(fèi)金額,并將調(diào)查數(shù)據(jù)適當(dāng)整理,繪制成如下兩幅尚不完整的表和圖:

組別

個(gè)人年消費(fèi)金額

頻數(shù)

頻率

A

18

B

a

b

C

D

24

E

12

合計(jì)

c

根據(jù)以上信息解答下列問題:

________; ________; ________;

補(bǔ)全頻數(shù)分布直方圖;

若這個(gè)企業(yè)有3000名員工,請(qǐng)你估計(jì)個(gè)人旅游年消費(fèi)金額在6000元以上的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過A(﹣2,0),B(4,0),C(0,3)三點(diǎn).

(1)求該拋物線的解析式;
(2)在y軸上是否存在點(diǎn)M,使△ACM為等腰三角形?若存在,請(qǐng)直接寫出所有滿足要求的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)若點(diǎn)P(t,0)為線段AB上一動(dòng)點(diǎn)(不與A,B重合),過P作y軸的平行線,記該直線右側(cè)與△ABC圍成的圖形面積為S,試確定S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為深化義務(wù)教育課程改革,滿足學(xué)生的個(gè)性化學(xué)習(xí)需求,某校就“學(xué)生對(duì)知識(shí)拓展,體育特長(zhǎng)、藝術(shù)特長(zhǎng)和實(shí)踐活動(dòng)四類選課意向”進(jìn)行了抽樣調(diào)查(每人選報(bào)一類),繪制了如圖所示的兩幅統(tǒng)計(jì)圖(不完整),請(qǐng)根據(jù)圖中信息,解答下列問題:
(1)求扇形統(tǒng)計(jì)圖中m的值,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在被調(diào)查的學(xué)生中,隨機(jī)抽一人,抽到選“體育特長(zhǎng)類”或“藝術(shù)特長(zhǎng)類”的學(xué)生的概率是多少?
(3)已知該校有800名學(xué)生,計(jì)劃開設(shè)“實(shí)踐活動(dòng)類”課程每班安排20人,問學(xué)校開設(shè)多少個(gè)“實(shí)踐活動(dòng)類”課程的班級(jí)比較合理?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)E,F(xiàn)分別是ABCD的邊BC,AD上的中點(diǎn),且∠BAC=90°.
(1)求證:四邊形AECF是菱形;
(2)若∠B=30°,BC=10,求菱形AECF面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論中正確的是(
A.a>0
B.3是方程ax2+bx+c=0的一個(gè)根
C.a+b+c=0
D.當(dāng)x<1時(shí),y隨x的增大而減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADB、BCD都是等邊三角形,點(diǎn)EF分別是AB,AD上兩個(gè)動(dòng)點(diǎn),滿足AE=DF連接BF與DE相交于點(diǎn)G,CHBF垂足為H,連接CG若DG=,BG=、滿足下列關(guān)系:,,則GH=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長(zhǎng)線上的一點(diǎn),BE=BA,過E作EF⊥AB,F(xiàn)為垂足,下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正確的結(jié)論有________(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié)合,研究數(shù)軸我們發(fā)現(xiàn):若數(shù)軸上點(diǎn)A、點(diǎn)B表示的數(shù)分別為a、b,則A,B兩點(diǎn)之間的距離AB=|a﹣b|,線段AB的中點(diǎn)表示的數(shù)為.如:如圖,數(shù)軸上點(diǎn)A表示的數(shù)為﹣2,點(diǎn)B表示的數(shù)為8,則A、兩點(diǎn)間的距離AB=|﹣2﹣8|=10,線段AB的中點(diǎn)C表示的數(shù)為=3,點(diǎn)P從點(diǎn)A出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).

(1)用含t的代數(shù)式表示:t秒后,點(diǎn)P表示的數(shù)為   ,點(diǎn)Q表示的數(shù)為   

(2)求當(dāng)t為何值時(shí),P、Q兩點(diǎn)相遇,并寫出相遇點(diǎn)所表示的數(shù);

(3)求當(dāng)t為何值時(shí),PQ=AB;

(4)若點(diǎn)M為PA的中點(diǎn),點(diǎn)N為PB的中點(diǎn),點(diǎn)P在運(yùn)動(dòng)過程中,線段MN的長(zhǎng)度是否發(fā)生變化?若變化,請(qǐng)說明理由;若不變,請(qǐng)求出線段MN的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案