精英家教網 > 初中數學 > 題目詳情

【題目】先閱讀下列解題過程,然后回答問題:

解方程:

解:①當≥0時,原方程可化為: ,解得;

②當<0時,原方程可化為: ,解得;

所以原方程的解是

(1)解方程:

(2)探究:當為何值時,方程 ①無解;②只有一個解;③有兩個解。

【答案】(1)(2)時,方程無解; =時,方程只有一個解;即時,方程有兩個解

【解析】試題分析:(1)首先要認真審題,解此題時要理解絕對值的意義,要會去絕對值,然后化為一元一次方程即可求得.

(2)運用分類討論進行解答.

試題解析:(1)當3x-2≥0時,原方程可化為:3x-2=4,

解得x=2;

3x-2<0時,原方程可化為:3x-2=-4,

解得x=-

所以原方程的解是x=2x=-

(2)|x-2|0,

∴當b+1<0,即b<-1時,方程無解;

b+1=0,即b=-1時,方程只有一個解;

b+1>0,即b>-1時,方程有兩個解.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AC邊為直徑作⊙O交BC邊于點D,過點D作DE⊥AB于點E,ED、AC的延長線交于點F.
(1)求證:EF是⊙O的切線;
(2)若EB= ,且sin∠CFD= ,求⊙O的半徑與線段AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線y=ax2+bx+c與x軸交于A(5,0),B(﹣1,0)兩點,與y軸交于點C(0, ).

(1)求拋物線的解析式;
(2)在拋物線上是否存在點P,使得△ACP是以點A為直角頂點的直角三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由;
(3)點G為拋物線上的一動點,過點G作GE垂直于y軸于點E,交直線AC于點D,過點D作x軸的垂線,垂足為點F,連接EF,當線段EF的長度最短時,求出點G的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數y1=kx+b(k≠0)和反比例函數y2= (m≠0)的圖象交于點A(﹣1,6),B(a,﹣2).
(1)求一次函數與反比例函數的解析式;
(2)根據圖象直接寫出y1>y2時,x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校初三(1)班部分同學接受一次內容為“最適合自己的考前減壓方式”的調查活動,收集整理數據后,老師將減壓方式分為五類,并繪制了圖1、圖2兩個不完整的統(tǒng)計圖,請根據圖中的信息解答下列問題.
(1)初三(1)班接受調查的同學共有多少名;
(2)補全條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中的“體育活動C”所對應的圓心角度數;
(3)若喜歡“交流談心”的5名同學中有三名男生和兩名女生;老師想從5名同學中任選兩名同學進行交流,直接寫出選取的兩名同學都是女生的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下列材料:

五個邊長為的小正方形如圖①放置,要求用兩條線段將它們分割成三部分后把它們拼接成一個新的正方形.

小辰是這樣思考的:圖①中五個邊長為的小正方形的面積的和為,拼接后的正方形的面積也應該是,故而拼接后的正方形的邊長為,因此想到了依據勾股定理,構造長為的線段,即:,因此想到了兩直角邊分別為的直角三角形的斜邊正好是,如圖②,進而拼接成了一個便長為的正方形.

參考上面的材料和小辰的思考方法,解決問題:

)五個邊長為的小正方形如圖④放置,類似圖③,在圖④中畫出分割線和拼接后的正方形(只要畫出一種即可).

)十個邊長為的小正方形如圖⑤放置,類似圖③,在圖⑤中畫出兩條分割線將它們分割成三部分,并畫出拼接后的正方形(只要畫出一種即可).

)五個邊長為的小正方形如圖⑥放置,類似圖③,在圖⑥中畫出兩條分割線將它們分割成三部分,并畫出拼接后的正方形(只要畫出一種即可).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,在長方形ABCDAB=12 cm,BC=6 cm.P沿AB邊從點A開始向點B2 cm/s的速度移動;點Q沿DA邊從點D開始向點A1 cm/s的速度移動.

設點P,Q同時出發(fā),t(s)表示移動的時間.

(發(fā)現) DQ________cm,AP________cm.(用含t的代數式表示)

(拓展)(1)如圖①t________s,線段AQ與線段AP相等?

(2)如圖②P,Q分別到達BA后繼續(xù)運動,P到達點C后都停止運動.

t為何值時,AQCP?

(探究)若點P,Q分別到達點BA后繼續(xù)沿著ABCDA的方向運動,當點P與點Q第一次相遇時,請直接寫出相遇點的位置.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】五一假期,成都某公司組織部分員工分別到甲、乙、丙、丁四地考察,公司按定額購買了前往各地的車票,如圖是用來制作完整的車票種類和相應數量的條形統(tǒng)計圖,根據統(tǒng)計圖回答下列問題:

若去丙地的車票占全部車票的,則總票數為______ 張,去丁地的車票有______

若公司采用隨機抽取的方式發(fā)車票,小胡先從所有的車票中隨機抽取一張所有車票的形狀、大小、質地完全相同、均勻,那么員工小胡抽到去甲地的車票的概率是多少?

若有一張車票,小王和小李都想要,他們決定采取擲一枚質地均勻的正方體骰子的方式來確定給誰,其上的數字是3的倍數,則給小王,否則給小李請問這個規(guī)則對雙方是否公平?若公平請說明理由;若不公平,請通過計算說明對誰更有利.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,DE平分∠ADC, 且∠EDO=15°,則∠OED=________°

查看答案和解析>>

同步練習冊答案