【題目】如圖,在正方形ABCD中,AC為對角線,E為AB上一點,過點E作,與AC、DC分別交于點為CG的中點,連結DE、EH、DH、下列結論: ; ≌; ; 若,則其中結論正確的有
A. 1個 B. 2個 C. 3個 D. 4個
【答案】D
【解析】試題解析:①∵四邊形ABCD為正方形,EF∥AD,
∴EF=AD=CD,∠ACD=45°,∠GFC=90°,
∴△CFG為等腰直角三角形,
∴GF=FC,
∵EG=EF-GF,DF=CD-FC,
∴EG=DF,故①正確;
②∵△CFG為等腰直角三角形,H為CG的中點,
∴FH=CH,∠GFH=∠GFC=45°=∠HCD,
在△EHF和△DHC中,
,
∴△EHF≌△DHC(SAS),故②正確;
③∵△EHF≌△DHC(已證),
∴∠HEF=∠HDC,
∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=∠AEF+∠ADF=180°,故③正確;
④∵,
∴AE=2BE,
∵△CFG為等腰直角三角形,H為CG的中點,
∴FH=GH,∠FHG=90°,
∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,
在△EGH和△DFH中,
,
∴△EGH≌△DFH(SAS),
∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,
∴△EHD為等腰直角三角形,
如圖,過H點作HM⊥CD于M,
設HM=x,則DM=5x,DH=x,CD=6x,
則S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2,
∴3S△EDH=13S△DHC,故④正確;
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,D、E分別是BC、BA的中點,連接DE,F在DE延長線上,且AF=AE.求證:四邊形ACEF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點E,F(xiàn)分別是ABCD的邊BC,AD上的中點,且∠BAC=90°.
(1)求證:四邊形AECF是菱形;
(2)若∠B=30°,BC=10,求菱形AECF面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ADB、△BCD都是等邊三角形,點E,F分別是AB,AD上兩個動點,滿足AE=DF.連接BF與DE相交于點G,CH⊥BF,垂足為H,連接CG.若DG=,BG=,且、滿足下列關系:,,則GH= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級為了解學生課堂發(fā)言情況,隨機抽取該年級部分學生,對他們某天在課堂上發(fā)言的次數(shù)進行了統(tǒng)計,其結果如下表,并繪制了如圖所示的兩幅不完整的統(tǒng)計圖,已知B、E兩組發(fā)言人數(shù)的比為5:2,
組別 | 課堂發(fā)言次數(shù)n |
A | 0≤n<3 |
B | 3≤n<6 |
C | 6≤n<9 |
D | 9≤n<12 |
E | 12≤n<15 |
F | 15≤n<18 |
請結合圖中相關數(shù)據(jù)回答下列問題:
(1)樣本容量是 , 并補全直方圖;
(2)該年級共有學生800人,請估計該年級在這天里發(fā)言次數(shù)不少于12次的人數(shù);
(3)已知A組發(fā)言的學生中恰好有1位女生,E組發(fā)言的學生中有2位男生,現(xiàn)從A組與E組中分別抽一位學生寫報告,請用列表法或畫樹狀圖的方法,求所抽的兩位學生恰好都是男生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點,BE=BA,過E作EF⊥AB,F(xiàn)為垂足,下列結論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正確的結論有________(填序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工藝品廠計劃一周生產工藝品2100個,平均每天生產300個,但實際每天生產量與計劃相比有出入.下表是某周的生產情況 (超產記為正,減產記為負):
(1) 寫出該廠星期一生產工藝品的數(shù)量.
(2) 本周產量最多的一天比最少的一天多生產多少個工藝品?
(3) 請求出該工藝品廠在本周實際生產工藝品的數(shù)量.
(4) 已知該廠實行每周計件工資制,每生產一個工藝品可得60元,若超額完成任務,則超過部分每個可得50元,少生產一個扣80元.試求該工藝廠在這一周應付出的工資總額.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在數(shù)軸上A點表示數(shù),B點表示數(shù),且、滿足,
(1)點A表示的數(shù)為_______;點B表示的數(shù)為__________;
(2)若點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC,請在數(shù)軸上找一點C,使AC=3BC,則C點表示的數(shù)__________;
(3)若在原點O處放一擋板,一小球甲從點A處以1個單位/秒的速度向左運動;同時另一小球乙從點B處以2個單位/秒的速度也向左運動,在碰到擋板后(忽略球的大小,可看作一點)以原來的速度向相反的方向運動,設運動的時間為t(秒),請分別表示出甲、乙兩小球到原點的距離(用含t的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了加強公民的節(jié)約意識,我市出臺階梯電價計算方案:居民生活用電將月用電量分為三檔,第一檔為月用電量200度(含)以內,第二檔為月用電量200~320度(含),第三檔為月用電量320度以上.這三個檔次的電價分別為:第一檔0.52元/度,第二檔0.57元/度,第三檔0.82元/度.
(1)若某戶居民10月份電費78元,則該戶居民10月份用電________度;
(2)若該戶居民2月份用電340度,則應繳電費________元;
(3)用x(度)來表示月用電量,請根據(jù)x的不同取值范圍,用含x的代數(shù)式表示出月用電費用.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com