【題目】如圖,在正方形ABCD中,AC為對角線,EAB上一點,過點E,與AC、DC分別交于點CG的中點,連結DE、EHDH、下列結論: ; ,則其中結論正確的有

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】試題解析:①∵四邊形ABCD為正方形,EFAD
EF=AD=CD,ACD=45°GFC=90°
∴△CFG為等腰直角三角形,
GF=FC,
EG=EF-GF,DF=CD-FC,
EG=DF,故①正確;
②∵△CFG為等腰直角三角形,HCG的中點,
FH=CHGFH=GFC=45°=HCD
EHFDHC中,
,

∴△EHF≌△DHCSAS),故②正確;
③∵△EHF≌△DHC(已證),
∴∠HEF=HDC
∴∠AEH+ADH=AEF+HEF+ADF-HDC=AEF+ADF=180°,故③正確;
④∵,

AE=2BE,
∵△CFG為等腰直角三角形,HCG的中點,
FH=GHFHG=90°,
∵∠EGH=FHG+HFG=90°+HFG=HFD,
EGHDFH中,
,

∴△EGH≌△DFHSAS),
∴∠EHG=DHF,EH=DH,DHE=EHG+DHG=DHF+DHG=FHG=90°,
∴△EHD為等腰直角三角形,
如圖,過H點作HMCDM,


HM=x,則DM=5x,DH=x,CD=6x
SDHC=×HM×CD=3x2,SEDH=×DH2=13x2
3SEDH=13SDHC,故④正確;
故選D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠ACB=90°,D、E分別是BC、BA的中點,連接DE,FDE延長線上,且AF=AE.求證:四邊形ACEF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點E,F(xiàn)分別是ABCD的邊BC,AD上的中點,且∠BAC=90°.
(1)求證:四邊形AECF是菱形;
(2)若∠B=30°,BC=10,求菱形AECF面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADB、BCD都是等邊三角形,點E,F分別是AB,AD上兩個動點滿足AE=DF連接BF與DE相交于點G,CHBF,垂足為H,連接CG若DG=BG=,、滿足下列關系:,,則GH=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級為了解學生課堂發(fā)言情況,隨機抽取該年級部分學生,對他們某天在課堂上發(fā)言的次數(shù)進行了統(tǒng)計,其結果如下表,并繪制了如圖所示的兩幅不完整的統(tǒng)計圖,已知B、E兩組發(fā)言人數(shù)的比為5:2,

組別

課堂發(fā)言次數(shù)n

A

0≤n<3

B

3≤n<6

C

6≤n<9

D

9≤n<12

E

12≤n<15

F

15≤n<18


請結合圖中相關數(shù)據(jù)回答下列問題:
(1)樣本容量是 , 并補全直方圖;
(2)該年級共有學生800人,請估計該年級在這天里發(fā)言次數(shù)不少于12次的人數(shù);
(3)已知A組發(fā)言的學生中恰好有1位女生,E組發(fā)言的學生中有2位男生,現(xiàn)從A組與E組中分別抽一位學生寫報告,請用列表法或畫樹狀圖的方法,求所抽的兩位學生恰好都是男生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點,BE=BA,過E作EF⊥AB,F(xiàn)為垂足,下列結論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正確的結論有________(填序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工藝品廠計劃一周生產工藝品2100個,平均每天生產300個,但實際每天生產量與計劃相比有出入.下表是某周的生產情況 (超產記為正,減產記為負):

(1) 寫出該廠星期一生產工藝品的數(shù)量.

(2) 本周產量最多的一天比最少的一天多生產多少個工藝品?

(3) 請求出該工藝品廠在本周實際生產工藝品的數(shù)量.

(4) 已知該廠實行每周計件工資制,每生產一個工藝品可得60元,若超額完成任務,則超過部分每個可得50元,少生產一個扣80元.試求該工藝廠在這一周應付出的工資總額.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在數(shù)軸上A點表示數(shù),B點表示數(shù),且、滿足,

1)點A表示的數(shù)為_______;點B表示的數(shù)為__________;

2)若點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC,請在數(shù)軸上找一點C,使AC3BC,則C點表示的數(shù)__________;

3)若在原點O處放一擋板,一小球甲從點A處以1個單位/秒的速度向左運動;同時另一小球乙從點B處以2個單位/秒的速度也向左運動,在碰到擋板后(忽略球的大小,可看作一點)以原來的速度向相反的方向運動,設運動的時間為t(秒),請分別表示出甲、乙兩小球到原點的距離(用含t的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了加強公民的節(jié)約意識,我市出臺階梯電價計算方案:居民生活用電將月用電量分為三檔,第一檔為月用電量200度(含)以內,第二檔為月用電量200~320度(含),第三檔為月用電量320度以上.這三個檔次的電價分別為:第一檔0.52/度,第二檔0.57/度,第三檔0.82/度.

(1)若某戶居民10月份電費78元,則該戶居民10月份用電________度;

(2)若該戶居民2月份用電340度,則應繳電費________元;

(3)用x(度)來表示月用電量,請根據(jù)x的不同取值范圍,用含x的代數(shù)式表示出月用電費用.

查看答案和解析>>

同步練習冊答案