【題目】已知點P(x0,y0)和直線y=kx+b,則點P到直線y=kx+b的距離證明可用公式d=計算.
例如:求點P(﹣1,2)到直線y=3x+7的距離.
解:因為直線y=3x+7,其中k=3,b=7.
所以點P(﹣1,2)到直線y=3x+7的距離為:d====.
根據(jù)以上材料,解答下列問題:
(1)求點P(1,﹣1)到直線y=x﹣1的距離;
(2)已知⊙Q的圓心Q坐標(biāo)為(0,5),半徑r為2,判斷⊙Q與直線y=x+9的位置關(guān)系并說明理由;
(3)已知直線y=﹣2x+4與y=﹣2x﹣6平行,求這兩條直線之間的距離.
【答案】(1);(2)相切,理由見解析;(3).
【解析】
試題分析:(1)根據(jù)點P到直線y=kx+b的距離公式直接計算即可;(2)先利用點到直線的距離公式計算出圓心Q到直線y=x+9的距離,然后根據(jù)切線的判定方法可判斷⊙Q與直線y=x+9相切;(3)利用兩平行線間的距離定義,在直線y=﹣2x+4上任意取一點,然后計算這個點到直線y=﹣2x﹣6的距離即可.
試題解析:(1)因為直線y=x﹣1,其中k=1,b=﹣1,
所以點P(1,﹣1)到直線y=x﹣1的距離為:d====;
(2)⊙Q與直線y=x+9的位置關(guān)系為相切.
理由如下:
圓心Q(0,5)到直線y=x+9的距離為:d===2,
而⊙O的半徑r為2,即d=r,
所以⊙Q與直線y=x+9相切;
(3)當(dāng)x=0時,y=﹣2x+4=4,即點(0,4)在直線y=﹣2x+4,
因為點(0,4)到直線y=﹣2x﹣6的距離為:d===2,
因為直線y=﹣2x+4與y=﹣2x﹣6平行,
所以這兩條直線之間的距離為2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)(-3)+(-2);
(2)-5 + 6 - 3;
(3)
(4)32+42-52
(5)
(6)
(7) )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于M,交AC于N.
(1)若∠ABC=70°,則∠MNA的度數(shù)是 .
(2)連接NB,若AB=8cm,△NBC的周長是14cm.
①求BC的長;
②在直線MN上是否存在P,使由P、B、C構(gòu)成的△PBC的周長值最?若存在,標(biāo)出點P的位置并求△PBC的周長最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016寧夏第24題)如圖,Rt△ABO的頂點O在坐標(biāo)原點,點B在x軸上,∠ABO=90°,∠AOB=30°,OB=2,反比例函數(shù)y=(x>0)的圖象經(jīng)過OA的中點C,交AB于點D.
(1)求反比例函數(shù)的關(guān)系式;
(2)連接CD,求四邊形CDBO的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個數(shù)為( )
(1)用一張像底片沖出來的10張一寸照片是全等形
(2)我國國旗商店四顆小五角星是全等形
(3)所有的正六邊形是全等形
(4)面積相等的兩個正方形是全等形
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.某天灌南縣城區(qū)的PM2.5值是29微克/立方米,根據(jù)PM2.5檢測網(wǎng)的空氣質(zhì)量新標(biāo)準,這一天城區(qū)的PM2.5值為優(yōu),請用科學(xué)記數(shù)法表示:2.5微米=米.(1米=1000000微米)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com