【題目】校園安全問題已成為社會各界關(guān)注的熱點問題,區(qū)教育局要求各學校加強對學生的安全教育,教育局安全科為了調(diào)查學生對“安全知識”內(nèi)容的了解程度程度分為:“A:十分熟悉”、“B:了解較多”、“C:了解較少、D:不了解”,對某所中學的學生進行了抽樣調(diào)查我們將這次調(diào)查的結(jié)果繪制了以下兩幅不完整統(tǒng)計圖,如圖1,圖2,請你根據(jù)圖中提供的信息解答下列問題:
根據(jù)以上信息,解答下列問題
補全條形統(tǒng)計圖;
本次抽樣調(diào)查了______名學生;在圖1中扇形統(tǒng)計圖中,求出“D”的部分所對應的圓心角等于______度
若該中學共有2000名學生,請你估計這所中學的所有學生中,對“安全知識”內(nèi)容的了解程度為“A:十分熟悉”和“B:了解較多”的學生共有______名?
【答案】(1)詳見解析;(2)100,18;(3)1500.
【解析】
(1)由A的人數(shù)及其所占百分比可得總?cè)藬?shù),根據(jù)各項目人數(shù)之和等于總?cè)藬?shù)求得C的人數(shù),據(jù)此可補全條形統(tǒng)計圖;
(2)由(1)可知被調(diào)查的總?cè)藬?shù),用360°乘以D項目人數(shù)占總?cè)藬?shù)的比例可得;
(3)總?cè)藬?shù)乘以樣本中A、B的百分比之和可得.
被調(diào)查的總?cè)藬?shù)為人,
對應的人數(shù)為,補全圖形如下:
由知被調(diào)查的總?cè)藬?shù)為100人
“D”的部分所對應的圓心角等于,
故答案為:100、18;
估計這所中學的所有學生中,對“安全知識”內(nèi)容的了解程度為“A:十分熟悉”和“B:了解較多”的學生共有人,
故答案為:1500.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,由相同邊長的小正方形組成的網(wǎng)格圖形,A、B、C都在格點上,利用網(wǎng)格畫圖:(注:所畫線條用黑色簽字筆描黑)
(1)過點C畫AB的平行線;
(2)過點B畫AC的垂線,垂足為點G;過點B畫AB的垂線,交AC的延長線于H.
(3)點B到AC的距離是線段 的長度,線段AB的長度是點 到直線 的距離.
(4)線段BG、AB的大小關(guān)系為:BG AB(填“>”、“<”或“=”),理由是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2008年北京奧運會后,同學們參與體育鍛煉的熱情高漲.為了解他們平均每周的鍛煉時間,小明同學在校內(nèi)隨機調(diào)查了50名同學,統(tǒng)計并制作了如下的頻數(shù)分布表和扇形統(tǒng)計圖.根據(jù)上述信息解答下列問題:
(1)m= , n=;
(2)在扇形統(tǒng)計圖中,D組所占圓心角的度數(shù)為度;
(3)全校共有3000名學生,估計該校平均每周體育鍛煉時間不少于6小時的學生約有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.
求證:AF平分∠BAC.
【答案】證明見解析.
【解析】試題分析:先根據(jù)AB=AC,可得∠ABC=∠ACB,再由垂直,可得90°的角,在△BCE和△BCD中,利用內(nèi)角和為180°,可分別求∠BCE和∠DBC,利用等量減等量差相等,可得FB=FC,再易證△ABF≌△ACF,從而證出AF平分∠BAC.
試題解析:證明:∵AB=AC(已知),
∴∠ABC=∠ACB(等邊對等角).
∵BD、CE分別是高,
∴BD⊥AC,CE⊥AB(高的定義).
∴∠CEB=∠BDC=90°.
∴∠ECB=90°∠ABC,∠DBC=90°∠ACB.
∴∠ECB=∠DBC(等量代換).
∴FB=FC(等角對等邊),
在△ABF和△ACF中,
,
∴△ABF≌△ACF(SSS),
∴∠BAF=∠CAF(全等三角形對應角相等),
∴AF平分∠BAC.
【題型】解答題
【結(jié)束】
23
【題目】如圖,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分線,DE⊥AB,垂足為E.
(1)求證:CD=BE;
(2)已知CD=2,求AC的長;
(3)求證:AB=AC+CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,將一塊含角的三角板ABO的一邊BO放在直線MN上,AB邊在直線MN的上方,其中,另一塊含角的三角板POQ的一邊OQ在直線MN上,另一邊OP在直線MN的下方.
現(xiàn)將圖1中的三角板POQ繞點O按順時針方向旋轉(zhuǎn),當直線MN恰好為的平分線時,如圖2所示,則的度數(shù)______度;
繼續(xù)將圖2中的三角板繞點O按順時針方向旋轉(zhuǎn)至圖3的位置,使得邊OA落在的內(nèi)部,且AO恰好為的平分線時,求的度數(shù);
在上述直角三角板從圖1按順時針方向旋轉(zhuǎn)至圖位置為止,這個過程中,若三角板POQ繞點O以每秒的速度勻速旋轉(zhuǎn),當三角板POQ的OP邊或OQ邊所在直線平分,則求此時三角板POQ繞點O旋轉(zhuǎn)的時間t的值請直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0有兩個實數(shù)根,且其中一個根為另一個根的2倍,則稱這樣的方程為“倍根方程”,以下關(guān)于“倍根方程”的說法:①方程x2-3x+2=0是“倍根方程”;②若(x-2)(mx+n)=0是“倍根方程”,則4m2+5mn+n2=0;③若pq=2,則關(guān)于x的方程px2+3x+q=0是“倍根方程”;④若方程ax2+bx+c=0是“倍根方程”,且5a+b=0,則方程ax2+bx+c=0的一個根為.其中正確的是____(填序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點E在AC上,∠AEB=∠ABC.
(1)圖1中,作∠BAC的角平分線AD,分別交CB、BE于D、F兩點,求證:∠EFD=∠ADC;
(2)圖2中,作△ABC的外角∠BAG的角平分線AD,分別交CB、BE的延長線于D、F兩點,試探究(1)中結(jié)論是否仍成立?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com