【題目】求兩個正整數(shù)的最大公約數(shù)是常見的數(shù)學(xué)問題,中國古代數(shù)學(xué)專著《九章算術(shù)》中便記載了求兩個正整數(shù)最大公約數(shù)的一種方法﹣﹣更相減損術(shù),術(shù)曰:“可半者半之,不可半者,副置分母、子之?dāng)?shù),以少成多,更相減損,求其等也.以等數(shù)約之”,意思是說,要求兩個正整數(shù)的最大公約數(shù),先用較大的數(shù)減去較小的數(shù),得到差,然后用減數(shù)與差中的較大數(shù)減去較小數(shù),以此類推,當(dāng)減數(shù)與差相等時,此時的差(或減數(shù))即為這兩個正整數(shù)的最大公約數(shù).

例如:求91與56的最大公約數(shù)

解:

請用以上方法解決下列問題:

(1)求108與45的最大公約數(shù);

(2)求三個數(shù)78、104、143的最大公約數(shù).

【答案】(1)9;(2)13

【解析】

試題分析:(1)根據(jù)題目,首先弄懂題意,然后根據(jù)例子寫出答案即可;

(2)可以先求出104與78的最大公約數(shù)為 26,再利用輾轉(zhuǎn)相除法,我們可以求出26 143的最大公約數(shù)為13,進(jìn)而得到答案.

試題解析:(1)108﹣45=63,63﹣45=18,27﹣18=9,18﹣9=9,所以108與45的最大公約數(shù)是9;

(2)先求104與78的最大公約數(shù),104﹣78=26,78﹣26=52,52﹣26=26,所以104與78的最大公約數(shù)是26;

再求26與143的最大公約數(shù),143﹣26=117,117﹣26=91,91﹣26=65,65﹣26=39,39﹣26=13,26﹣13=13,所以,26與143的最大公約數(shù)是13,78、104、143的最大公約數(shù)是13.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】你會對多項(xiàng)式(x2+5x+2)(x2+5x+3)12分解因式嗎?對結(jié)構(gòu)較復(fù)雜的多項(xiàng)式,若把其中某些部分看成一個整體,用新字母代替(即換元),能使復(fù)雜的問題簡單化、明朗化.從換元的個數(shù)看,有一元代換、二元代換等.

對于(x2+5x+2)(x2+5x+3)12

解法一:設(shè)x2+5xy

則原式=(y+2)(y+3)12y2+5y6(y+6)(y1)

(x2+5x+6)(x2+5x1)(x+2)(x+3)(x2+5x1)

解法二:設(shè)x2+5x+2y,

則原式=y(y+1)12y2+y12(y+4)(y3)

(x2+5x+6)(x2+5x1)(x+2)(x+3)(x2+5x1)

解法三:設(shè)x2+2m,5xn,

則原式=(m+n)(m+n+1)12(m+n)2+(m+n)12(m+n+4)(m+n3)

(x2+5x+6)(x2+5x1)(x+2)(x+3)(x2+5x1)

按照上面介紹的方法對下列多項(xiàng)式分解因式:

(1)(x2+x4)(x2+x+3)+10;

(2)(x+1)(x+2)(x+3)(x+6)+x2;

(3)(x+y2xy)(x+y2)+(xy1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知整數(shù)a1,a2,a3,a4,…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……以此類推,則a2018的值為( 。

A. ﹣1007 B. ﹣1008 C. ﹣1009 D. ﹣2018

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店經(jīng)銷一種健身球,已知這種健身球的成本價為每個20元,市場調(diào)查發(fā)現(xiàn),該種健身球每天的銷售量y個)與銷售單價x(元)有如下關(guān)系:y=﹣20x+80(20≤x≤40),設(shè)這種健身球每天的銷售利潤為w元.

(1)求wx之間的函數(shù)關(guān)系式;

(2)該種健身球銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?

(3)如果物價部門規(guī)定這種健身球的銷售單價不高于28元,該商店銷售這種健身球每天要獲得150元的銷售利潤,銷售單價應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠B=40°,C=80°,ADBC邊上的高,AE平分∠BAC.

(1)求∠BAE的度數(shù);(2)求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

我們知道的幾何意義是在數(shù)軸上數(shù)對應(yīng)的點(diǎn)與原點(diǎn)的距離,即,也就是說表示在數(shù)軸上數(shù)與數(shù)對應(yīng)的點(diǎn)之間的距離,這個結(jié)論可以推廣為表示數(shù)軸上對應(yīng)點(diǎn)之間的距離.

1:已知,求的值.

解:容易看出,在數(shù)軸上與原點(diǎn)距離為的點(diǎn)的對應(yīng)數(shù)為,即的值為

2:已知,求的值.

解:在數(shù)軸上與的距離為的點(diǎn)的對應(yīng)數(shù)為,即的值為

仿照閱讀材料的解法,求下列各式中的值.

1

2

3)由以上探索猜想:對于任何有理數(shù)是否有最小值?如果有,寫出最小值;如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,給正五邊形的頂點(diǎn)依次編號為.若從某一頂點(diǎn)開始,沿正五邊形的邊順時針行走,頂點(diǎn)編號的數(shù)字是幾,就走幾個邊長,則稱這種走法為一次“移位”.

:小宇同學(xué)從編號為的頂點(diǎn)開始,他應(yīng)走個邊長,即從為第一次“移位”,這時他到達(dá)編號為的頂點(diǎn);然后從為第二次“移位”,....若小宇同學(xué)從編號為的頂點(diǎn)開始,則第九十九次“移位”后他所處頂點(diǎn)的編號是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓⊙O中,將弧AB沿弦AB折疊,使弧AB恰好經(jīng)過圓心O,點(diǎn)P是優(yōu)弧AMB上一點(diǎn),則∠APB的度數(shù)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC,ABBCBEAC,∠1=∠2,AD=AB,則下列結(jié)論不正確的是

A. BF=DF B. ∠1=∠EFD C. BF>EF D. FDBC

查看答案和解析>>

同步練習(xí)冊答案