【題目】你會對多項(xiàng)式(x2+5x+2)(x2+5x+3)﹣12分解因式嗎?對結(jié)構(gòu)較復(fù)雜的多項(xiàng)式,若把其中某些部分看成一個(gè)整體,用新字母代替(即換元),能使復(fù)雜的問題簡單化、明朗化.從換元的個(gè)數(shù)看,有一元代換、二元代換等.
對于(x2+5x+2)(x2+5x+3)﹣12.
解法一:設(shè)x2+5x=y,
則原式=(y+2)(y+3)﹣12=y2+5y﹣6=(y+6)(y﹣1)
=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).
解法二:設(shè)x2+5x+2=y,
則原式=y(y+1)﹣12=y2+y﹣12=(y+4)(y﹣3)
=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).
解法三:設(shè)x2+2=m,5x=n,
則原式=(m+n)(m+n+1)﹣12=(m+n)2+(m+n)﹣12=(m+n+4)(m+n﹣3)
=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).
按照上面介紹的方法對下列多項(xiàng)式分解因式:
(1)(x2+x﹣4)(x2+x+3)+10;
(2)(x+1)(x+2)(x+3)(x+6)+x2;
(3)(x+y﹣2xy)(x+y﹣2)+(xy﹣1)2.
【答案】(1) (x+2)(x-1) ( +1)
(2)()2
(3) (x+y-xy-1)2
【解析】
(1)令m=,原式=因式分解即可;
(2)=()()+,令n=,再將原式=(n+2)n+x2進(jìn)行因式分解即可;
(3)令a=x+y,b=xy,代入原式即可因式分解.
(1)令m=,
原式=
=m2-m-2=(m-2)(m+1)
= ( -2)( +1)
=(x+2)(x-1) ( +1)
(2)=()()+,
令n=,
原式=(n+2)n+x2=n2+2n+x2
=(n+x)2=()2
(3) 令a=x+y,b=xy,原式=
=(a-b)2-2(a-b)+1
=(a-b-1)2
=(x+y-xy-1)2
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形紙片ABCD沿對角線BD折疊,點(diǎn)C落在點(diǎn)E處,BE與AD相交于點(diǎn)F,∠EDF=38°,則∠DBE的度數(shù)是( )
A. 25° B. 26° C. 27° D. 38°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=5,BC=6,AD是BC邊上的中線且AD=4,F是AD上的動(dòng)點(diǎn),E是AC邊上的動(dòng)點(diǎn),則CF+EF的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中, ⊙O的半徑是1,直線AB與x軸交于點(diǎn)P(x,0),且與x軸的正半軸夾角為45°,若直線AB與⊙O有公共點(diǎn),則x值的范圍是( )
A. -1≤x≤1 B. -≤x≤ C. -<x< D. 0≤x≤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下面三行單項(xiàng)式:
, ,,,,,…;①
,,,,,,…;②
,,,, ,,…;③
根據(jù)你發(fā)現(xiàn)的規(guī)律,解答下列問題:
(1)第①行的第8個(gè)單項(xiàng)式為 ;
(2)第②行的第9個(gè)單項(xiàng)式為 ;
(3)第③行的第n個(gè)單項(xiàng)式為 (用含n的式子表示);
(4)取每行的第8個(gè)單項(xiàng)式,令這三個(gè)單項(xiàng)式的和為A.
當(dāng)時(shí),求A的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若線段上的一個(gè)點(diǎn)把這條線段分成1:2的兩條線段,則稱這個(gè)點(diǎn)是這條線段的三等分點(diǎn).如圖1,點(diǎn)C在線段AB上,且AC:CB=1:2,則點(diǎn)C是線段AB的一個(gè)三等分點(diǎn).
(1)如圖2,數(shù)軸上點(diǎn)A、B表示的數(shù)分別為-4、12,點(diǎn)D是線段AB的三等分點(diǎn),求點(diǎn)D在數(shù)軸上所表示的數(shù);
(2)在(1)的條件下,點(diǎn)P從點(diǎn)A出發(fā)以每秒1個(gè)單位長度的速度在數(shù)軸上向右運(yùn)動(dòng);點(diǎn)Q從點(diǎn)B出發(fā),在數(shù)軸上先向左運(yùn)動(dòng),與點(diǎn)P重合后立刻改變方向與點(diǎn)P同向而行,且速度始終為每秒3個(gè)單位長度,點(diǎn)P、Q同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①用含t的式子表示線段AQ的長度;
②當(dāng)點(diǎn)P是線段AQ的三等分點(diǎn)時(shí),求點(diǎn)P在數(shù)軸上所表示的數(shù).
圖1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從正五邊形的五個(gè)頂點(diǎn)中,任取四個(gè)頂點(diǎn)連成四邊形,對于事件M:“這個(gè)四邊形是等腰梯形” .下列判斷正確的是( )
A. 事件M是不可能事件 B. 事件M是必然事件
C. 事件M發(fā)生的概率為 D. 事件M發(fā)生的概率為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求兩個(gè)正整數(shù)的最大公約數(shù)是常見的數(shù)學(xué)問題,中國古代數(shù)學(xué)專著《九章算術(shù)》中便記載了求兩個(gè)正整數(shù)最大公約數(shù)的一種方法﹣﹣更相減損術(shù),術(shù)曰:“可半者半之,不可半者,副置分母、子之?dāng)?shù),以少成多,更相減損,求其等也.以等數(shù)約之”,意思是說,要求兩個(gè)正整數(shù)的最大公約數(shù),先用較大的數(shù)減去較小的數(shù),得到差,然后用減數(shù)與差中的較大數(shù)減去較小數(shù),以此類推,當(dāng)減數(shù)與差相等時(shí),此時(shí)的差(或減數(shù))即為這兩個(gè)正整數(shù)的最大公約數(shù).
例如:求91與56的最大公約數(shù)
解:
請用以上方法解決下列問題:
(1)求108與45的最大公約數(shù);
(2)求三個(gè)數(shù)78、104、143的最大公約數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com