【題目】如圖,線(xiàn)段AB=2,C是AB上一動(dòng)點(diǎn),以AC、BC為邊在AB同側(cè)作正△ACE、正△BCF,連EF,點(diǎn)P為EF的中點(diǎn).當(dāng)點(diǎn)C從A運(yùn)動(dòng)到B時(shí),P點(diǎn)運(yùn)動(dòng)路徑長(zhǎng)為____.
【答案】1
【解析】
分別延長(zhǎng)AE、BF交于點(diǎn)H,得出P為CH中點(diǎn),則P的運(yùn)行軌跡為三角形HAB的中位線(xiàn)MN.運(yùn)用中位線(xiàn)的性質(zhì)求出MN的長(zhǎng)度即可.
解:如圖,分別延長(zhǎng)AE、BF交于點(diǎn)H.
∵∠A=∠FCB=60°,
∴AH∥CF,
∵∠B=∠ECA=60°,
∴CE∥BH,
∴四邊形ECFH為平行四邊形,
∴EF與HC互相平分.
∵P為CH的中點(diǎn),
∴P正好為EF中點(diǎn),即在P的運(yùn)動(dòng)過(guò)程中,P始終為CH的中點(diǎn),所以P的運(yùn)行軌跡為三角形HAB的中位線(xiàn)MN.
∵AB=2,
∴MN=1,即P的移動(dòng)路徑長(zhǎng)為1,
故答案為:1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=2,且拋物線(xiàn)經(jīng)過(guò)A(1,0),C(0,5)兩點(diǎn),與x軸交于點(diǎn)B.
(1)若直線(xiàn)y=mx+n經(jīng)過(guò)B. C兩點(diǎn),求直線(xiàn)BC和拋物線(xiàn)的解析式;
(2)設(shè)點(diǎn)P為拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),連接PB、PC,若△BPC是以BC為直角邊的直角三角形,求此時(shí)點(diǎn)P的坐標(biāo);
(3)在拋物線(xiàn)上BC段有另一個(gè)動(dòng)點(diǎn)Q,以點(diǎn)Q為圓心作Q,使得Q與直線(xiàn)BC相切,在運(yùn)動(dòng)的過(guò)程中是否存在一個(gè)最大Q?若存在,請(qǐng)直接寫(xiě)出最大Q的半徑;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們不妨約定:在直角△ABC中,如果較長(zhǎng)的直角邊的長(zhǎng)度為較短直角邊長(zhǎng)度的兩倍,則稱(chēng)直角△ABC為黃金三角形
(1)已知:點(diǎn)O(0,0),點(diǎn)A(2,0),下列y軸正半軸上的點(diǎn)能與點(diǎn)O,點(diǎn)A構(gòu)成黃金三角形的有 ;填序號(hào)①(0,1);②(0,2);③(0,3),④(0,4);
(2)已知點(diǎn)P(5,0),判斷直線(xiàn)y=2x-6在第一象限是否存在點(diǎn)Q,使得△OPQ是黃金三角形,若存在求出點(diǎn)Q的坐標(biāo),若不存在,說(shuō)明理由;
(3)已知:反比例函數(shù)與直線(xiàn)y=-x+m+1交于M,N兩點(diǎn),若在x軸上有且只有一個(gè)點(diǎn)C,使得∠MCN=90,求m的值,并判斷此時(shí)△MNC是否為黃金三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,AC=BC=2,M是邊AC的中點(diǎn),于H.
(1)求MH的長(zhǎng)度;
(2)求證:;
(3)若D是邊AB上的點(diǎn),且為等腰三角形,直接寫(xiě)出AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E、F、G、H分別為矩形ABCD的邊AB、BC、CD、DA的中點(diǎn),連接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,則AB的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn):如圖①,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D是BC的中點(diǎn),以點(diǎn)D為頂點(diǎn)作正方形DFGE,使點(diǎn)A、C分別在DE和DF上,連接BE、AF.則線(xiàn)段BE和AF數(shù)量關(guān)系_____.
(2)類(lèi)比探究:如圖②,保持△ABC固定不動(dòng),將正方形DFGE繞點(diǎn)D旋轉(zhuǎn)α(0°<α≤360°),則(1)中的結(jié)論是否成立?如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.
(3)解決問(wèn)題:若BC=DF=2,在(2)的旋轉(zhuǎn)過(guò)程中,連接AE,請(qǐng)直接寫(xiě)出AE的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AM為⊙O的切線(xiàn),A為切點(diǎn).過(guò)⊙O上一點(diǎn)B作BD⊥AM于點(diǎn)D,BD交⊙O于點(diǎn)C,OC平分∠AOB.
(1)求∠AOB的度數(shù);
(2)當(dāng)⊙O的半徑為4cm時(shí),求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC和△ECD都是等邊三角形,△EBC可以看作是△DAC經(jīng)過(guò)平移、軸對(duì)稱(chēng)或旋轉(zhuǎn)得到.
(1)如圖1,當(dāng)B,C,D在同一直線(xiàn)上,AC交BE于點(diǎn)F,AD交CE于點(diǎn)G,求證:CF=CG;
(2)如圖2,當(dāng)△ABC繞點(diǎn)C旋轉(zhuǎn)至AD⊥CD時(shí),連接BE并延長(zhǎng)交AD于M,求證:MD=ME.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,△PBC、△QCD是兩個(gè)等邊三角形,PB與DQ交于M,BP與CQ交于E,CP與DQ交于F。
求證:PM=QM。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com