【題目】(1)問(wèn)題發(fā)現(xiàn):如圖①,在△ABC中,∠BAC90°ABAC,點(diǎn)DBC的中點(diǎn),以點(diǎn)D為頂點(diǎn)作正方形DFGE,使點(diǎn)A、C分別在DEDF上,連接BE、AF.則線段BEAF數(shù)量關(guān)系_____

(2)類比探究:如圖②,保持△ABC固定不動(dòng),將正方形DFGE繞點(diǎn)D旋轉(zhuǎn)α(0°α≤360°),則(1)中的結(jié)論是否成立?如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.

(3)解決問(wèn)題:若BCDF2,在(2)的旋轉(zhuǎn)過(guò)程中,連接AE,請(qǐng)直接寫(xiě)出AE的最大值.

【答案】(1)BEAF;(2)成立;(3)AE的最大值為3

【解析】

(1)根據(jù)等腰直角三角形的性質(zhì)和正方形的性質(zhì)得出ADBD,DEDF,∠BDE=∠ADF,證明BDE≌△ADF,即可得出結(jié)論;

(2)根據(jù)等腰直角三角形的性質(zhì)和正方形的性質(zhì)得出ADBD,DEDF,∠BDE=∠ADF,證明BDE≌△ADF,即可得出結(jié)論;注意兩種情況討論;

(3)當(dāng)點(diǎn)AD、E共線時(shí),AE取得最大值,最大值為AD+DE,求出DE的長(zhǎng),即可得出結(jié)果.

解:(1)∵△ABC中,∠BAC90°ABAC,點(diǎn)DBC的中點(diǎn),

ADBDDC,∠BDA90°,

∵四邊形DFGE是正方形,

DEDF,∠EDF90°,

∴∠BDE=∠ADF90°,

BDEADF中, ,

∴△BDE≌△ADF(SAS)

BEAF

故答案為:BEAF;

(2)成立;理由如下:

當(dāng)正方形DFGEBC的上方時(shí),如圖②所示,連接AD,

∵在RtABC中,ABAC,D為斜邊BC的中點(diǎn),

ADBD,ADBC,

∴∠ADE+EDB90°,

∵四邊形DFGE為正方形,

DEDF,且∠EDF90°,

∴∠ADE+ADF90°,

∴∠BDE=∠ADF,

BDEADF中,

∴△BDE≌△ADF(SAS),

BEAF

當(dāng)正方形DFGEBC的下方時(shí),連接AD,如圖③所示:

∵∠BDE=∠BDF+90°,∠ADF=∠BDF+90°,

∴∠BDE=∠ADF,

BDEADF中,,

∴△BDE≌△ADF(SAS),

BEAF;

綜上所述,(1)中的結(jié)論BEAF成立;

(3)ADE中,∵AEAD+DE,

∴當(dāng)點(diǎn)A、D、E共線時(shí),AE取得最大值,最大值為AD+DE.如圖④所示:

ADBC1DEDF2,

AEAD+DE3,

AE的最大值為3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)課外活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形生物苗圃園,其中一邊靠墻,另外三邊用長(zhǎng)為30米的籬笆圍成。已知墻長(zhǎng)為18(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊的長(zhǎng)為x.

(1)若平行于墻的一邊長(zhǎng)為y米,直接寫(xiě)出yx的函數(shù)關(guān)系式及其自變量x的取值范圍.

(2)垂直于墻的一邊的長(zhǎng)為多少米時(shí),這個(gè)苗圃園的面積最大,并求出這個(gè)最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AC=3,BC=4,若AC,BC邊上的中線BE,AD垂直相交于點(diǎn)O,則AB=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)實(shí)驗(yàn)獲得兩個(gè)變量 x(x 0), y( y 0) 的一組對(duì)應(yīng)值如下表。

x

1

2

3

4

5

6

7

y

7

3.5

2.33

1.75

1.4

1.17

1

(1)在網(wǎng)格中建立平面直角坐標(biāo)系,畫(huà)出相應(yīng)的函數(shù)圖象,求出這個(gè)函數(shù)表達(dá)式;

(2)結(jié)合函數(shù)圖象解決問(wèn)題:(結(jié)果保留一位小數(shù))

的值約為多少?

②點(diǎn)A坐標(biāo)為(6,0),點(diǎn)B在函數(shù)圖象上,OA=OB,則點(diǎn)B的橫坐標(biāo)約是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)市委、市政府創(chuàng)建森林城市的號(hào)召,某中學(xué)在校園內(nèi)計(jì)劃種植柳樹(shù)和銀杏樹(shù).已知購(gòu)買2棵柳樹(shù)苗和3棵銀杏樹(shù)苗共需1800元,購(gòu)買4棵柳樹(shù)苗和1棵銀杏樹(shù)苗共需1100元.

(1)求每棵柳樹(shù)苗和每棵銀杏樹(shù)苗各多少錢?

(2)該校計(jì)劃購(gòu)買兩種樹(shù)苗共100棵,并且銀杏樹(shù)苗的數(shù)量不少于柳樹(shù)苗的,請(qǐng)?jiān)O(shè)計(jì)出最省錢的購(gòu)買方案,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線的圖象與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左邊)軸交于點(diǎn),拋物線的頂點(diǎn)為.

(1)求點(diǎn)的坐標(biāo);

(2)點(diǎn)為線段上一點(diǎn)(點(diǎn)不與點(diǎn)重合),過(guò)點(diǎn)軸的垂線,與直線交于點(diǎn),與拋物線交于點(diǎn),過(guò)點(diǎn)交拋物線于點(diǎn),過(guò)點(diǎn)軸于點(diǎn),可得矩形.如圖,點(diǎn)在點(diǎn)左邊,當(dāng)矩形的周長(zhǎng)最大時(shí),求此時(shí)的的面積;

(3)(2)的條件下,當(dāng)矩形的周長(zhǎng)最大時(shí),連接,過(guò)拋物線上一點(diǎn)軸的平行線,與直線交于點(diǎn)(點(diǎn)在點(diǎn)的上方),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCADE中,ACB=AED=90°,連接BD、CE,EAC=DAB.

1)求證:ABC ∽△ADE

2)求證:BAD ∽△CAE;

3)已知BC=4AC=3,AE=.將AED繞點(diǎn)A旋轉(zhuǎn),當(dāng)點(diǎn)E落在線段CD上時(shí),求 BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的弦,C的中點(diǎn),聯(lián)結(jié)OA,AC,如果∠OAB20°,那么∠CAB的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市植物園于20193-5月舉辦花展,按照往年的規(guī)律推算,自4月下旬起游客量每天增加人,游客量預(yù)計(jì)將在51日達(dá)到高峰,并持續(xù)到54日,隨后游客量每天有所減少.已知424日為第一天起,每天的游客量(人)與時(shí)間(天)的函數(shù)圖像如圖所示,結(jié)合圖像提供的信息,解答下列問(wèn)題:

已知該植物園門票/張,若每位游客在園內(nèi)每天平均消費(fèi)元,試求51-54日,所有游客消費(fèi)總額為多少元?

當(dāng)時(shí),求關(guān)于的函數(shù)解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案