【題目】如圖,在RtABC中,∠ACB=,DAB邊上的一點,過DDEABAC于點E,BC=BD,連結(jié)CDBE于點F.

(1)求證:CE=DE;

(2)若點DAB的中點,求∠AED的度數(shù).

【答案】(1)證明見解析;(2)60°;

【解析】

(1)直接證明RtDEBRtCEB,即可解決問題.

(2)首先證明ADE≌△BDE,進而證明∠AED=DEB=CEB,即可解決問題.

(1)DEAB,ACB=

∴△BCE與△BDE都是直角三角形.

RtBCERtBDE

RtBCERtBDE(HL)

CE=DE

(2)∵DEAB,

∴∠ADE=BDE=

∵點DAB的中點,

AD=BD

又∵DE=DE,

∴△ADE≌△BDE,

∴∠AED=DEB

∵△BCE≌△BDE,

∴∠CEB=DEB

∴∠AED=DEB=CEB,

∵∠AED+DEB+CEB=

∴∠AED=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知 中, 厘米, 厘米,點 的中點.如果點 在線段 上以 厘米/秒的速度由 點向 點運動.同時,點 在線段 上由 點以 厘米/秒的速度向 點運動.設(shè)運動的時間為 秒.

(1)直接寫出:

BD=_______厘米; BP=________厘米;

CP=_______厘米; CQ=_______厘米;

(可用含 、a的代數(shù)式表示)

(2)若以 ,, 為頂點的三角形和以 ,, 為頂點的三角形全等,試求 、t的值;

(3)若點 以()中的運動速度從點 出發(fā),點 以原來的運動速度從點 同時出發(fā),都逆時針沿 三邊運動.設(shè)運動的時間為 秒;直接寫出t= 秒時點 與點 第一次相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCABC中,AB=AB′,B=B,補充條件后仍不一定能保證ABC≌△ABC,則補充的這個條件是(

A. BC=BC B. A=∠A C. AC=AC D. C=∠C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在RtACB中,∠ACB=90°,點DAB的中點,點ECD的中點,過點CCFABAE的延長線于點F

1)求證:△ADE≌△FCE;

2)若∠DCF=120°,DE=2,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一架云梯AB的長25 m,斜靠在一面墻上,梯子靠墻的一端A距地面距離AC24 m.

(1)這個梯子底端B離墻的距離BC有多少米?

(2)如果梯子的頂端下滑了4 m,那么梯子的底部在水平方向也滑動了4 m嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中學(xué)生上學(xué)帶手機的現(xiàn)象越來越受到社會的關(guān)注,為此媒體記者隨機調(diào)查了某校若干名學(xué)生上學(xué)帶手機的目的,分為四種類型:A接聽電話;B收發(fā)短信;C查閱資料;D游戲聊天.并將調(diào)查結(jié)果繪制成圖1和圖2的統(tǒng)計圖(不完整),請根據(jù)圖中提供的信息,解答下列問題:

(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生.
(2)將圖1、圖2補充完整;
(3)現(xiàn)有4名學(xué)生,其中A類兩名,B類兩名,從中任選2名學(xué)生,求這兩名學(xué)生為同一類型的概率(用列表法或樹狀圖法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=13,AC=5,BC邊上的中線AD=6,點EAD的延長線上,且AD=DE

(1)試判斷△ABE的形狀并說明理由;

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)成為現(xiàn)代人的時尚,某市有關(guān)部門統(tǒng)計了最近6個月到圖書館的讀者的職業(yè)分布情況,并做了下列兩個不完整的統(tǒng)計圖.
(1)在統(tǒng)計的這段時間內(nèi),共有萬人次到圖書館閱讀,其中商人占百分比為%;
(2)將條形統(tǒng)計圖補充完整;
(3)若5月份到圖書館的讀者共28000人次,估計其中約有多少人次讀者是職工?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由點P(14,1),A(a,0),B(0,a)確定的△PAB的面積為18.

(1)如圖,若0<a<14,求a的值.

(2)如果a>14,請畫圖并求a的值.

查看答案和解析>>

同步練習(xí)冊答案