【題目】如圖,在平面直角坐標(biāo)系中,直線的解析式為,直線的解析式為,與軸,軸分別交于點(diǎn),點(diǎn),直線與交于點(diǎn).
(1)求點(diǎn),點(diǎn),點(diǎn)的坐標(biāo),并求出的面積;
(2)若直線 上存在點(diǎn)(不與重合),滿足,請求出點(diǎn)的坐標(biāo);
(3)在軸右側(cè)有一動直線平行于軸,分別與,交于點(diǎn),且點(diǎn)在點(diǎn)的下方,軸上是否存在點(diǎn),使為等腰直角三角形?若存在,請直接寫出滿足條件的點(diǎn)的坐標(biāo);若不存在,請說明理由.
【答案】(1),,,;(2);(3)存在,點(diǎn)的坐標(biāo)為或或.
【解析】
(1)把和分別代入可求出點(diǎn),點(diǎn)坐標(biāo),聯(lián)立直線和直線解析式可求得點(diǎn)的坐標(biāo),然后根據(jù)B,C坐標(biāo)可求的面積;
(2)作軸于點(diǎn),軸于點(diǎn)E,根據(jù)可得,代入的解析式可求出點(diǎn)的坐標(biāo);
(3)分情況討論:①當(dāng)時,②當(dāng)時,③當(dāng)時,分別求出點(diǎn)的坐標(biāo)即可.
解:(1)把代入可得,
∴,
把代入可得,
∴,
聯(lián)立直線和直線得:,解得:,
∴點(diǎn)坐標(biāo)為,
∵ , ,
∴;
(2)作軸于點(diǎn),軸于點(diǎn)E,
∵
∴
∴,
∴把代入的解析式,得,
∴存在點(diǎn)滿足;
(3)點(diǎn)的坐標(biāo)為或或,
設(shè)動直線為,由題可得,
則點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,
∴(如圖).
①當(dāng)時,有,即,
解得:,
∴點(diǎn)的坐標(biāo)為.
∵軸,
∴點(diǎn)的坐標(biāo)為;
②當(dāng)時,有,即,
解得:,
∴點(diǎn)的坐標(biāo)為.
∵軸,
∴點(diǎn)的坐標(biāo)為;
③當(dāng)時,點(diǎn)到的距離,即,
解得:,
∴點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.
∵為等腰直角三角形,
∴點(diǎn)的坐標(biāo)為.
綜上所述:點(diǎn)的坐標(biāo)為或或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E是正方形ABCD中CD邊上一點(diǎn),以點(diǎn)A為中心把△ADE順時針旋轉(zhuǎn)90°。
(1)在圖中畫出旋轉(zhuǎn)后的圖形;
(2)若旋轉(zhuǎn)后E點(diǎn)的對應(yīng)點(diǎn)記為M,點(diǎn)F在BC上,且∠EAF=45°,連接EF。
①求證:△AMF≌△AEF;
②若正方形的邊長為6,AE=,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC與Rt△OCD中,∠ACB=∠DCO=90°,O為AB的中點(diǎn).
(1)求證:∠B=∠ACD.
(2)已知點(diǎn)E在AB上,且BC2=ABBE.
(i)若tan∠ACD=,BC=10,求CE的長;
(ii)試判定CD與以A為圓心、AE為半徑的⊙A的位置關(guān)系,并請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,∠B=50°,P 是邊 AB 上的一個動點(diǎn)(不與頂點(diǎn) A 重合),則∠BPC 的度數(shù)可能是
A. 50° B. 80° C. 100° D. 130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,以AB為直徑的⊙O交AC于點(diǎn)D,DE⊥BC,垂足為E.
(1)求證:DE是⊙O的切線;
(2)若DG⊥AB,垂足為點(diǎn)F,交⊙O于點(diǎn)G,∠A=35°,⊙O半徑為5,求劣弧DG的長.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c經(jīng)過A、B兩點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(﹣1,0)、(0,﹣3).
(1)求拋物線的函數(shù)解析式.
(2)點(diǎn)E為拋物線的頂點(diǎn),點(diǎn)C為拋物線與x軸的另一交點(diǎn),點(diǎn)D為y軸上一點(diǎn),且DC=DE,求出點(diǎn)D的坐標(biāo).
(3)在第二問的條件下,射線DE上是否存在點(diǎn)P,使得以C、D、P為頂點(diǎn)的三角形與△DOC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=x+4的圖象與二次函數(shù)y=ax(x﹣2)的圖象相交于A(﹣1,b)和B,點(diǎn)P是線段AB上的動點(diǎn)(不與A、B重合),過點(diǎn)P作PC⊥x軸,與二次函數(shù)y=ax(x﹣2)的圖象交于點(diǎn)C.
(1)求a、b的值
(2)求線段PC長的最大值;
(3)若△PAC為直角三角形,請直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com