【題目】某校學(xué)生會(huì)向全校2400名學(xué)生發(fā)起了愛心捐款活動(dòng),為了解捐款情況,學(xué)生會(huì)隨機(jī)調(diào)查了部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計(jì)圖1和圖2,請(qǐng)根據(jù)相關(guān)信息,解答系列問題:

1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 人,圖1m的值是 ;

2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)和中位數(shù);

3)根據(jù)樣本數(shù)據(jù),估計(jì)該校本次活動(dòng)捐款金額為10元的學(xué)生人數(shù).

【答案】15032;(21615;(3768.

【解析】

1)根據(jù)題意由5元的人數(shù)及其所占百分比可得抽樣調(diào)查的學(xué)生人數(shù),用10元人數(shù)除以抽樣調(diào)查的學(xué)生人數(shù)可得m的值;

2)由題意根據(jù)統(tǒng)計(jì)圖可以分別得到本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)和中位數(shù);

3)由題意根據(jù)全??cè)藬?shù)捐款金額為10元的學(xué)生人數(shù)所占乘以抽樣調(diào)查的學(xué)生人數(shù)的比例,即可估計(jì)該校本次活動(dòng)捐款金額為10元的學(xué)生人數(shù).

解:(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為4÷8%=50人,

,

.

故答案為:50;32.

2)本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)是:(元);

本次調(diào)查獲取的樣本數(shù)據(jù)的中位數(shù)是:15.

3)估計(jì)該校本次活動(dòng)捐款金額為10元的學(xué)生人數(shù)為2400×32%=768人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c (a、b、c為常數(shù)且a≠0)中的x與y的部分對(duì)應(yīng)值如下表,

x

-3

-2

-1

0

1

2

3

4

5

y

12

5

0

-3

-4

-3

0

5

12

下列四個(gè)結(jié)論:

(1)二次函數(shù)y=ax2+bx+c 有最小值,最小值為-3;

(2)拋物線與y軸交點(diǎn)為(0,-3);

(3)二次函數(shù)y=ax2+bx+c 的圖像對(duì)稱軸是x=1;

(4)本題條件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.

其中正確結(jié)論的個(gè)數(shù)是( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系,已知一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A1,0),與反比例函數(shù)0)的圖象相交于點(diǎn)Bm1).

1m的值和一次函數(shù)的解析式;

2)結(jié)合圖象直接寫出當(dāng)0時(shí),不等式的解集

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O中,直徑CD⊥弦ABM,AE⊥BDE,交CDN,連AC

1)求證:ACAN;

2)若OM∶OC3∶5,AB5,求⊙O的半徑;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,C=90°,B=30°,以A為圓心,任意長(zhǎng)為半徑畫弧分別交AB、AC于點(diǎn)MN,再分別以M、N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法中正確的個(gè)數(shù)是

ADBAC的平分線;②∠ADC=60°;點(diǎn)DAB的中垂線上;SDACSABC=13

A1 B2 C3 D4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)魏晉時(shí)期數(shù)學(xué)家劉徽編撰的最早一部測(cè)量數(shù)學(xué)著作《海島算經(jīng)》中有一題今有望海島,立兩表齊高三丈,前后相去千步,令后表與前表參相直.從前表卻行一百二十三步人目著地,取望島峰,與表末參合.從后表卻行一百二十七步人目著地取望島峰,亦與表末參合.問島高幾何?

譯文今要測(cè)量海島上一座山峰AH的高度,B處和D處樹立標(biāo)桿BCDE,標(biāo)桿的高都是3,BD兩處相隔1000步(1=101=6尺),并且AH,CBDE在同一平面內(nèi).從標(biāo)桿BC后退123步的F處可以看到頂峰A和標(biāo)桿頂端C在同一直線上;從標(biāo)桿ED后退127步的G處可以看到頂峰A和標(biāo)桿頂端E在同一直線上.則山峰AH的高度是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,ABC的頂點(diǎn)均在格點(diǎn)上點(diǎn)B的坐標(biāo)為(1,0).

1)在圖1中畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1直接寫出點(diǎn)C的對(duì)應(yīng)點(diǎn)C1的坐標(biāo)

2)在圖2,以點(diǎn)O為位似中心,將△ABC放大,使放大后的△A2B2C2與△ABC的對(duì)應(yīng)邊的比為21(畫出一種即可).直接寫出點(diǎn)C的對(duì)應(yīng)點(diǎn)C2的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解

如圖 a,在ABC 中,D BC 的中點(diǎn).如果用 SABC 表示ABC 的面積,則由等底等高的三角形的面積相等,可得.同理,如圖 b,在 ABC 中,D、E BC 的三等分點(diǎn),可得

結(jié)論應(yīng)用

已知ABC 的面積為 42,請(qǐng)利用上面的結(jié)論解決下列問題:

(1)如圖 1,若 DE 分別是 AB、AC 的中點(diǎn),CD BE交于點(diǎn) F,則DBF 的面積為 ;

類比推廣

(2)如圖 2,若 D、E AB 的三等分點(diǎn),F、G AC 三等分點(diǎn),CD 分別交 BFBG M、N,CE 分別交 BFBG P、Q,求BEP 的面積;

(3)如圖2,問題(2)中的條件不變,求四邊形EPMD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】動(dòng)手操作:
如圖,已知ABCD,點(diǎn)A為圓心,小于AC長(zhǎng)為半徑作圓弧,分別交AB,ACE,F兩點(diǎn),再分別以點(diǎn)E,F為圓心,大于EF長(zhǎng)為半徑作圓弧,兩條圓弧交于點(diǎn)P,作射線AP,交CD于點(diǎn)M.
問題解決:

(1)若∠ACD=78°,求∠MAB的度數(shù);
(2)CNAM,垂足為點(diǎn)N,求證:CAN≌△CMN.
實(shí)驗(yàn)探究:
(3)直接寫出當(dāng)∠CAB的度數(shù)為多少時(shí)?CAM分別為等邊三角形和等腰直角三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案