精英家教網 > 初中數學 > 題目詳情

【題目】對x,y定義一種新運算T,規(guī)定:T(x,y)=(其中a、b均為非零常數),這里等式右邊是通常的四則運算,例如:T(0,1)==b.

(1)已知T(1,﹣1)=﹣2,T(4,2)=1.

求a,b的值;

若關于m的不等式組 恰好有3個整數解,求實數p的取值范圍;

(2)若T(x,y)=T(y,x)對任意實數x,y都成立(這里T(x,y)和T(y,x)均有意義),則a,b應滿足怎樣的關系式?

【答案】(1)﹣2≤p<﹣ (2)a=2b

【解析】試題分析:(1)①根據題目所給的運算順序,將已知的兩值代入即可得到關于x、y的二元一次方程組,解方程組即可求出a、b的值;②將已知的運算代入不等式組即可得關于m的不等式組,解不等式組求得m的取值范圍,再根據不等式組恰好有3個整數解,即可求出p的取值范圍;(2)根據題意可得出以a、b為系數關于x、y的關系式,由題意可求出a、b所滿足的關系式即可.

試題解析:

)①根據題意得:,即

,即,

解得:

根據題意得:,

得:,

得:

不等式組的解集為,

不等式組恰好有個整數解,即,,,

,解得:

)由,得到,

整理得:,

對任意實數都成立,

,即

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】數軸上點A對應的數為a,點B對應的數為b,且多項式6x3y2xy5的二次項系數為a,常數項為b

(1) 直接寫出:a__________b_________

(2) 數軸上點P對應的數為x,若PAPB20,求x的值

(3) 若點M從點A出發(fā),以每秒1個單位長度的速度沿數軸向右移動;同時點N從點B出發(fā),以每秒2個單位長度的速度沿數軸向左移動,到達A點后立即返回并向右繼續(xù)移動,求經過多少秒后,M、N兩點相距1個單位長度

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2+2x+c經過點A(0,3),B(-1,0),請回答下列問題:

(1)求拋物線對應的二次函數的表達式;

(2)拋物線的頂點為D,對稱軸與x軸交于點E,連接BD,BD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】A地到B地的快速通道某隧道建設,將由甲,乙兩個工程隊共同施工完成,據調查得知:甲,乙兩隊單獨完成這項上程所需天數之比為45,若先由甲,乙兩隊合作40天,剩下的工程再乙隊做10天完成,

1)求甲.乙兩隊單獨完成這取工程各需多少天?

2)若此項工程由甲隊做m天,乙隊n天完成,

①請用含m的式子表示n;

②已知甲隊每天的施工費為15萬元,乙隊每天的施工費用為10萬元,若工程預算的總費用不超過1150萬元,甲隊工作的天數與乙隊工作的天數之和不超過90天.請問甲、乙兩隊各工作多少天,完成此項工程總費用最少?最少費用是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+1經過A(-1,0),B(1,1)兩點.

(1)求該拋物線的解析式;

(2)閱讀理

在同一平面直角坐標系中,直線l1:y=k1x+b1(k1,b1為常數,且k1≠0),直線l2:y=k2x+b2(k2,b2為常數,且k2≠0),若l1l2,則k1·k2=-1.

解決問題:

若直線y=3x-1與直線y=mx+2互相垂直,求m的值;

是否存在點P,使得PAB是以AB為直角邊的直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由;

(3)M是拋物線上一動點,且在直線AB的上方(不與A,B重合),求點M到直線AB的距離的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】列方程(或方程組)解應用題2019年是決勝全面建成小康社會、打好污染防治攻堅戰(zhàn)的關鍵之年.為了解決垃圾回收最后一公里的難題,小黃狗智能垃圾分類回收環(huán)保公益項目通過大數據、人工智能和物聯(lián)網等先進科技進駐小區(qū)、寫字樓、學校、機關和社區(qū)等進行回收.某位小區(qū)居民裝修房屋,在過去的一個月內投放紙類垃圾和塑料垃圾共82公斤,其中紙類垃圾的投放是塑料垃圾的8倍多10公斤,請問這位小區(qū)居民在過去的一個月內投放紙類垃圾和塑料垃圾分別是多少公斤?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,∠MAN=15°,AB=BC=CD=DE=EF,則∠FEM=________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,三個邊長均為2的正方形重疊在一起,O1O2是其中兩個正方形的中心,則陰影部分的面積是_______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AD ABC 的角平分線,DE,DF 分別是BAD ACD 的高,得到下列四個結論:①OAOD;②ADEF;③當∠A90°時,四邊形 AEDF 是正方形;④AE+DFAF+DE.其中正確的是_________(填序號).

查看答案和解析>>

同步練習冊答案