【題目】A地到B地的快速通道某隧道建設(shè),將由甲,乙兩個(gè)工程隊(duì)共同施工完成,據(jù)調(diào)查得知:甲,乙兩隊(duì)單獨(dú)完成這項(xiàng)上程所需天數(shù)之比為45,若先由甲,乙兩隊(duì)合作40天,剩下的工程再乙隊(duì)做10天完成,

1)求甲.乙兩隊(duì)單獨(dú)完成這取工程各需多少天?

2)若此項(xiàng)工程由甲隊(duì)做m天,乙隊(duì)n天完成,

①請用含m的式子表示n

②已知甲隊(duì)每天的施工費(fèi)為15萬元,乙隊(duì)每天的施工費(fèi)用為10萬元,若工程預(yù)算的總費(fèi)用不超過1150萬元,甲隊(duì)工作的天數(shù)與乙隊(duì)工作的天數(shù)之和不超過90天.請問甲、乙兩隊(duì)各工作多少天,完成此項(xiàng)工程總費(fèi)用最少?最少費(fèi)用是多少?

【答案】1)甲,乙兩隊(duì)單獨(dú)完成這取工程各需80,100;2)①n=100-②甲、乙兩隊(duì)各工作40,50,完成此項(xiàng)工程總費(fèi)用最少,最少費(fèi)用是1100萬元

【解析】

(1) 設(shè)甲,乙兩隊(duì)單獨(dú)完成這取工程各需4x,5x,甲每天完成 ,乙每天完成,然后列出方程( )×40+ =1,解出即可,要檢驗(yàn);

(2)根據(jù)(1)中所求即可列出①的方程

②令施工總費(fèi)用為W萬元,則可列出w=15m+10×(100-)=m+1000,再根據(jù)兩隊(duì)施工的天數(shù)之和不超過90,工程預(yù)算的總費(fèi)用不超過1150萬元,即可解答

(1)設(shè)甲,乙兩隊(duì)單獨(dú)完成這取工程各需4x,5x,

由題意得:( )×40+ =1

解得:x=20,

經(jīng)檢驗(yàn):x=20是原方程的根,

4x=80,5x=100,

:,乙兩隊(duì)單獨(dú)完成這取工程各需80,100;

(2)①由題意得:n= =100-

②令施工總費(fèi)用為W萬元,

w=15m+10×(100-)=m+1000

∵兩隊(duì)施工的天數(shù)之和不超過90,工程預(yù)算的總費(fèi)用不超過1150萬元,

m+1000≤1150,m+(100-)≤90

40≤m≤60,

∴當(dāng)m=40時(shí),完成此項(xiàng)工程總費(fèi)用最少,

n=100-≤50,W=1100萬元,

:甲、乙兩隊(duì)各工作40,50,完成此項(xiàng)工程總費(fèi)用最少,最少費(fèi)用是1100萬元

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了迎接2018年高中招生考試,某中學(xué)對全校九年級進(jìn)行了一次數(shù)學(xué)摸底考試,并隨機(jī)抽取了部分學(xué)生的測試成績作為樣本進(jìn)行分析,繪制成如下兩幅不完整的統(tǒng)計(jì)圖1和圖2,請你根據(jù)圖中所給的信息解答下列問題。

(1)請將表示成績類別為“中”的條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)在扇形統(tǒng)計(jì)圖中表示成績?yōu)椤皟?yōu)”的扇形所對的圓心角為 度;

(3)學(xué)校九年級共有600人參加這次數(shù)學(xué)考試,估計(jì)該校有多少名學(xué)生成績可以達(dá)到優(yōu).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,對角線ACBD交于點(diǎn)O,EOC上任意一點(diǎn),AG⊥BE于點(diǎn)G,交BD于點(diǎn)F.

(1)如圖1,若四邊形ABCD是正方形,

①求證:△AOF≌△BOE;

②連接EF,判斷EFBC的位置關(guān)系,并說明理由。

(2)如圖2,若四邊形ABCD是菱形, ∠ABC=1200的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著移動(dòng)計(jì)算技術(shù)和無線網(wǎng)絡(luò)的快速發(fā)展,移動(dòng)學(xué)習(xí)方式越來越引起人們的關(guān)注,某校計(jì)劃將這種學(xué)習(xí)方式應(yīng)用到教育學(xué)中,從全校1500名學(xué)生中隨機(jī)抽取了部分學(xué)生,對其家庭中擁有的移動(dòng)設(shè)備的情況進(jìn)行調(diào)查,并繪制出如下的統(tǒng)計(jì)圖①和圖②,根據(jù)相關(guān)信息,解答下列問題:

(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為   ,圖①中m的值為   ;

(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);

(3)根據(jù)樣本數(shù)據(jù),估計(jì)該校1500名學(xué)生家庭中擁有3臺移動(dòng)設(shè)備的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形ABCD中,EAD中點(diǎn),CE延長線交BA延長線于點(diǎn)F

1)求證:CD=AF;

2)若BC=2CD,求證:∠F=BCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】潼南綠色無公害蔬菜基地有甲、乙兩種植戶,他們種植了A、B兩類蔬菜,兩種植戶種植的兩類蔬菜的種植面積與總收入如下表:

種植戶

種植A類蔬菜面積

(單位:畝)

種植B類蔬菜面積

(單位:畝)

總收入

(單位:元)

3

1

12500

2

3

16500

說明:不同種植戶種植的同類蔬菜每畝平均收入相等.

(1)求A、B兩類蔬菜每畝平均收入各是多少元?

(2)某種植戶準(zhǔn)備租20畝地用來種植A、B兩類蔬菜,為了使總收入不低于63000元,且種植A類蔬菜的面積多于種植B類蔬菜的面積(兩類蔬菜的種植面積均為整數(shù)),求該種植戶所有租地方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對x,y定義一種新運(yùn)算T,規(guī)定:T(x,y)=(其中a、b均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例如:T(0,1)==b.

(1)已知T(1,﹣1)=﹣2,T(4,2)=1.

求a,b的值;

若關(guān)于m的不等式組 恰好有3個(gè)整數(shù)解,求實(shí)數(shù)p的取值范圍;

(2)若T(x,y)=T(y,x)對任意實(shí)數(shù)x,y都成立(這里T(x,y)和T(y,x)均有意義),則a,b應(yīng)滿足怎樣的關(guān)系式?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BC=AC,∠C=90°,AC=7cm,AD∠BAC的平分線,交BCD,DE⊥ABE,求△DEB的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為1的正方形,E,FBD所在直線上的兩點(diǎn).若AE=,EAF=135°,則以下結(jié)論正確的是( 。

A. DE=1 B. tanAFO= C. AF= D. 四邊形AFCE的面積為

查看答案和解析>>

同步練習(xí)冊答案