【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(4,0),點(diǎn)B(0,3),把△ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),得△A′BO′,點(diǎn)A、O旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為A′、O′,記旋轉(zhuǎn)角為ɑ.
(1)如圖1,若ɑ=90°,求AA′的長(zhǎng);

(2)如圖2,若ɑ=120°,求點(diǎn)O′的坐標(biāo).

【答案】
(1)

解:∵點(diǎn)A(4,0),點(diǎn)B(0,3),

∴OA=4,OB=3.

在Rt△ABO中,由勾股定理得AB=5.

根據(jù)題意,△A′BO′是△ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)900得到的,

由旋轉(zhuǎn)是性質(zhì)可得:∠A′BA=90°,A′B=AB=5,

∴AA′=5


(2)

解:如圖,根據(jù)題意,由旋轉(zhuǎn)是性質(zhì)可得:∠O′BO=120°,O′B=OB=3

過(guò)點(diǎn)O′作O′C⊥y軸,垂足為C,

則∠O′CB=90°.

在Rt△O′CB中,由∠O′BC=60°,∠BO′C=30°.

∴BC= O′B=

由勾股定理O′C=

∴OC=OB+BC=

∴點(diǎn)O′的坐標(biāo)為( , ).


【解析】(1)根據(jù)勾股定理得AB=5,由旋轉(zhuǎn)性質(zhì)可得∠A′BA=90°,A′B=AB=5.繼而得出AA′=5 ;(2)O′C⊥y軸,由旋轉(zhuǎn)是性質(zhì)可得:∠O′BO=120°,O′B=OB=3,在Rt△O′CB中,由∠O′BC=60°得BC、O′C的長(zhǎng),繼而得出答案.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識(shí),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對(duì)旋轉(zhuǎn)的性質(zhì)的理解,了解①旋轉(zhuǎn)后對(duì)應(yīng)的線段長(zhǎng)短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:

(2)

(3)

(4)

(5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)自然數(shù)的立方,可以分裂成若干個(gè)連續(xù)奇數(shù)的和。例如:分別可以按如圖所示的方式分裂2個(gè)、3個(gè)和4個(gè)連續(xù)奇數(shù)的和,即=3+5;=7+9+11; =13+15+17+19;…;若也按照此規(guī)律來(lái)進(jìn)行分裂,則分裂出的奇數(shù)中,最大的奇數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AD平分∠BAC,P為線段AD上的一個(gè)動(dòng)點(diǎn),PEAD交直線BC于點(diǎn)E,當(dāng)P點(diǎn)在線段AD上運(yùn)動(dòng)時(shí),∠E與∠B,ACB的數(shù)量關(guān)系為________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】顧琪在學(xué)習(xí)了《展開(kāi)與折疊》這一課后,明白了很多幾何體都能展開(kāi)成平面圖形.于是她在家用剪刀展開(kāi)了一個(gè)長(zhǎng)方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的.根據(jù)你所學(xué)的知識(shí),回答下列問(wèn)題:

顧琪總共剪開(kāi)了________條棱.

現(xiàn)在顧琪想將剪斷的重新粘貼到上去,而且經(jīng)過(guò)折疊以后,仍然可以還原成一個(gè)長(zhǎng)方體紙盒,你認(rèn)為她應(yīng)該將剪斷的紙條粘貼到中的什么位置?請(qǐng)你幫助她在上補(bǔ)全.

已知顧琪剪下的長(zhǎng)方體的長(zhǎng)、寬、高分別是、、,求這個(gè)長(zhǎng)方體紙盒的體積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某足球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)射門,將足球從離地面0.5m的A處正對(duì)球門踢出(點(diǎn)A在y軸上),足球的飛行高度y(單位:m)與飛行時(shí)間t(單位:s)之間滿足函數(shù)關(guān)系y=at2+5t+c,已知足球飛行0.8s時(shí),離地面的高度為3.5m.
(1)足球飛行的時(shí)間是多少時(shí),足球離地面最高?最大高度是多少?
(2)若足球飛行的水平距離x(單位:m)與飛行時(shí)間t(單位:s)之間具有函數(shù)關(guān)系x=10t,已知球門的高度為2.44m,如果該運(yùn)動(dòng)員正對(duì)球門射門時(shí),離球門的水平距離為28m,他能否將球直接射入球門?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算(直接寫出結(jié)果):

(1)﹣2+5

(2)﹣17+(﹣3)

(3)(﹣10)﹣(-6)

(4)(﹣1)×(﹣12)

(5)﹣2×(﹣3)2

(6)﹣1÷(﹣5)

(7)﹣1200+(﹣1)200

(8)﹣0.125×(﹣2)3

(9)|﹣|

(10)(-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各式:;②;③;④;⑤;⑥;⑦;⑧中方程有________,一元一次方程有________(只填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)O按如圖方式疊放在一起.

(1)如圖(1)若∠BOD=35°,求∠AOC的度數(shù),若∠AOC=135°,求∠BOD的度數(shù)。

(2)如圖(2)若∠AOC=150°,求∠BOD的度數(shù)

(3)猜想∠AOC與∠BOD的數(shù)量關(guān)系,并結(jié)合圖(1)說(shuō)明理由.

(4)三角尺AOB不動(dòng),將三角尺CODOD邊與OA邊重合,然后繞點(diǎn)O按順時(shí)針或逆時(shí)針?lè)较蛉我廪D(zhuǎn)動(dòng)一個(gè)角度,當(dāng)∠AOD(0°<AOD<90°)等于多少度時(shí),這兩塊三角尺各有一條邊互相垂直,直接寫出∠AOD角度所有可能的值,不用說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案