【題目】如圖,將兩塊三角板的頂點重合.

(1)請寫出圖中所有以點為頂點且小于平角的角;

(2)你寫出的角中相等的角有________;

(3),試求的度數(shù);

(4)當三角板繞點適當旋轉(保持兩三角板有重合部分)時,之間具有怎樣的數(shù)量關系?

【答案】(1)見解析;(2) AOC=DOB,AOD=COB; (3) 127°;(4)見解析.

【解析】

(1)根據(jù)角的定義寫出即可;(2)根據(jù)等腰直角三角形AOC和直角三角形DOB,求出相等的角后,寫出即可;(3)求出∠AOD,代入∠AOB=∠AOD+∠DOB求出即可;(4)求出∠AOD,代入∠AOB=∠AOD+∠DOB求出即可.

(1)圖中所有以O點為頂點且小于平角的角有∠AOD,∠AOC,∠AOB,∠DOC,∠DOB,∠COB.
(2)圖中相等的角有∠AOC=∠DOB,∠AOD=∠COB,
故答案為:∠AOC=∠DOB,∠AOD=∠COB.
(3)∵∠DOC=53°,∠AOC=90°,
∴∠AOD=90°-53°=37°,
∵∠DOB=90°,
∴∠AOB=∠AOD+∠DOB=90°+37°=127°.
(4)∠AOB=180°-∠DOC,
理由是:∵∠AOC=90°,
∴∠AOD=90°-∠DOC,
∵∠DOB=90°,
∴∠AOB=∠AOD+∠DOB.
=90°-∠DOC+90°
=180°-∠DOC,
∠AOB=180°-∠DOC.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(背景)某班在一次數(shù)學實踐活動中,對矩形紙片進行折疊實踐操作,并將其產(chǎn)生的數(shù)學問題進行相關探究. (操作)如圖,在矩形ABCD中,AD=6,AB=4,點P是BC邊上一點,現(xiàn)將△APB沿AP對折,得△APM,顯然點M位置隨P點位置變化而發(fā)生改變
(問題)試求下列幾種情況下:點M到直線CD的距離

(1)∠APB=75°;
(2)P與C重合;
(3)P是BC的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個機器人從數(shù)軸原點出發(fā),沿數(shù)軸正方向,以每前進3步后退2步的程序運動。設該機器人每秒前進或后退1步,并且每步的距離為一個單位長度,表示第n秒時機器人在數(shù)軸上位置所對應的數(shù)。則下列結論中正確的有______.(只需填入正確的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別以Rt△ABC的斜邊AB,直角邊AC為邊向外作等邊△ABD和△ACE,F(xiàn)為AB的中點,DE,AB相交于點G,若∠BAC=300,下列結論:①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④△DBF≌△EFA.其中正確結論的序號是(

A. ②④ B. ①③ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小蘭畫了一個函數(shù)y=x2+ax+b的圖象如圖,則關于x的方程x2+ax+b=0的解是(
A.無解
B.x=1
C.x=﹣4
D.x=﹣1或x=4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在△ABC中,DBC邊上的一點,EAD的中點,過點ABC的平行線交與BE的延長線于點F,且AF=DC,連結CF

1)求證:四邊形ADCF是平行四邊形;

2)當ABAC有何數(shù)量關系時,四邊形ADCF為矩形,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,函數(shù)y= 的圖象過點A(1,2).
(1)求該函數(shù)的解析式;
(2)過點A分別向x軸和y軸作垂線,垂足為B和C,求四邊形ABOC的面積;
(3)求證:過此函數(shù)圖象上任意一點分別向x軸和y軸作垂線,這兩條垂線與兩坐標軸所圍成矩形的面積為定值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】按下面的程序計算:

若開始輸入的x值為正整數(shù),最后輸出的結果為556,則開始輸入的x值為____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y=kx+b的圖象與x軸交于點A,與反比例函數(shù)x0)的圖象交于點B(﹣2,n),過點BBCx軸于點C,點D(3﹣3n,1)是該反比例函數(shù)圖象上一點.

(1)求m的值;

(2)若DBC=∠ABC,求一次函數(shù)y=kx+b的表達式.

查看答案和解析>>

同步練習冊答案