【題目】(背景)某班在一次數(shù)學(xué)實(shí)踐活動(dòng)中,對(duì)矩形紙片進(jìn)行折疊實(shí)踐操作,并將其產(chǎn)生的數(shù)學(xué)問(wèn)題進(jìn)行相關(guān)探究. (操作)如圖,在矩形ABCD中,AD=6,AB=4,點(diǎn)P是BC邊上一點(diǎn),現(xiàn)將△APB沿AP對(duì)折,得△APM,顯然點(diǎn)M位置隨P點(diǎn)位置變化而發(fā)生改變
(問(wèn)題)試求下列幾種情況下:點(diǎn)M到直線CD的距離
(1)∠APB=75°;
(2)P與C重合;
(3)P是BC的中點(diǎn).
【答案】
(1)解:當(dāng)∠APB=75°時(shí),如圖1,過(guò)M作EF⊥AD,則EF⊥BC,
∵∠AMP=∠B=∠MFP=90°,
∴∠AME=∠MPF,
∴△AEM∽△MFP,
∵∠APB=75°,
∴∠MPF=30°,
∵AM=AB=4,
∴AE=2,
∴DE=4
(2)解:當(dāng)P與C重合,如圖2,過(guò)M作GH∥AD交BA,CD的延長(zhǎng)線于G,H,
則四邊形ADHG是矩形,
∵∠AMP=∠ABC=∠AMC=90°,
∴∠AMG=∠MPH,
∴△AMG∽△MHP,
設(shè)AG=x,則DH=x,
∴PH=4+x,
∴ ,
∴MH= x,
在Rt△MHP中,MH2+PH2=MC2,
即( x)2+(4x)2=62,
∴x= (負(fù)值舍去),
∴MH=
(3)解:當(dāng)P是BC的中點(diǎn)時(shí),如圖3,過(guò)M作EF∥AB交AB,BC于E,F(xiàn),
∵P是BC的中點(diǎn),
∴BP=3,
設(shè)PF=x,則BF=3+x,
∴AE=3+x,
由折疊的性質(zhì)得,AM=AB=4,PM=PB=3,∠AMP=∠B=90°,
∴△AEM∽△MFP,
∴ ,
∴EM= x,
在Rt△AEM中,
AE2+EM2=AM2,
即( x)2+(3+x)2=42,
∴x= (負(fù)值舍去),
∴DE= .
【解析】(1)如圖1,過(guò)M作EF⊥AD,則EF⊥BC,由∠AMP=∠B=∠MFP=90°,得到∠AME=∠MPF,推出△AEM∽△MFP,根據(jù)已知條件得到∠MPF=30°,AE=2,即可得到結(jié)論;(2)如圖2,過(guò)M作GH∥AD交BA,CD的延長(zhǎng)線于G,H,則四邊形ADHG是矩形,推出△AMG∽△MHP,設(shè)AG=x,則DH=x,得到PH=4+x,列比例式得到MH= x,根據(jù)勾股定理得到x= (負(fù)值舍去),即可得到結(jié)論;(3)當(dāng)P是BC的中點(diǎn)時(shí),如圖3,過(guò)M作EF∥AB交AB,BC于E,F(xiàn),推出△AEM∽△MFP,根據(jù)相似三角形的性質(zhì)得到 ,得到EM= x,根據(jù)勾股定理列方程即可得到結(jié)論.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用翻折變換(折疊問(wèn)題)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市計(jì)劃在“十周年”慶典當(dāng)天開(kāi)展購(gòu)物抽獎(jiǎng)活動(dòng),凡當(dāng)天在該超市購(gòu)物的顧客,均有一次抽獎(jiǎng)的機(jī)會(huì),抽獎(jiǎng)規(guī)則如下:將如圖所示的圓形轉(zhuǎn)盤(pán)平均分成四個(gè)扇形,分別標(biāo)上1,2,3,4四個(gè)數(shù)字,抽獎(jiǎng)?wù)哌B續(xù)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)兩次,當(dāng)每次轉(zhuǎn)盤(pán)停止后指針?biāo)干刃蝺?nèi)的數(shù)為每次所得的數(shù)(若指針指在分界線時(shí)重轉(zhuǎn));當(dāng)兩次所得數(shù)字之和為8時(shí),返現(xiàn)金20元;當(dāng)兩次所得數(shù)字之和為7時(shí),返現(xiàn)金15元;當(dāng)兩次所得數(shù)字之和為6時(shí)返現(xiàn)金10元.
(1)試用樹(shù)狀圖或列表的方法表示出一次抽獎(jiǎng)所有可能出現(xiàn)的結(jié)果;
(2)某顧客參加一次抽獎(jiǎng),能獲得返還現(xiàn)金的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰三角形ABO的底邊OA在x軸上,頂點(diǎn)B在反比例函數(shù)y= (x>0)的圖象上,當(dāng)?shù)走匫A上的點(diǎn)A在x軸的正半軸上自左向右移動(dòng)時(shí),頂點(diǎn)B也隨之在反比例函數(shù)y= (x>0)的圖象上滑動(dòng),但點(diǎn)O始終位于原點(diǎn).
(1)如圖①,若點(diǎn)A的坐標(biāo)為(6,0),求點(diǎn)B的坐標(biāo);
(2)當(dāng)點(diǎn)A移動(dòng)到什么位置時(shí),三角形ABO變成等腰直角三角形,請(qǐng)說(shuō)明理由;
(3)在(2)中,如圖②,△PA1A是等腰直角三角形,點(diǎn)P在反比例函數(shù)y= (x>0)的圖象上,斜邊A1A在x軸上,求點(diǎn)A1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是邊長(zhǎng)為a的正方形,點(diǎn)G,E分別是邊AB,BC的中點(diǎn),∠AEF=90°,且EF交正方形外角的平分線CF于點(diǎn)F.
(1)證明:∠BAE=∠FEC;
(2)證明:△AGE≌△ECF;
(3)求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰三角形ABO的底邊OA在x軸上,頂點(diǎn)B在反比例函數(shù)y= (x>0)的圖象上,當(dāng)?shù)走匫A上的點(diǎn)A在x軸的正半軸上自左向右移動(dòng)時(shí),頂點(diǎn)B也隨之在反比例函數(shù)y= (x>0)的圖象上滑動(dòng),但點(diǎn)O始終位于原點(diǎn).
(1)如圖①,若點(diǎn)A的坐標(biāo)為(6,0),求點(diǎn)B的坐標(biāo);
(2)當(dāng)點(diǎn)A移動(dòng)到什么位置時(shí),三角形ABO變成等腰直角三角形,請(qǐng)說(shuō)明理由;
(3)在(2)中,如圖②,△PA1A是等腰直角三角形,點(diǎn)P在反比例函數(shù)y= (x>0)的圖象上,斜邊A1A在x軸上,求點(diǎn)A1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公園準(zhǔn)備修建一塊長(zhǎng)方形草坪,長(zhǎng)為30米,寬為20米.并在草坪上修建如圖所示的十字路,已知十字路寬米,回答下列問(wèn)題:
(1)修建十字路的面積是多少平方米?
(2)草坪(陰影部分)的面積是多少?
(3)如果十字路寬2米,那么草坪(陰影部分)的面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算題:
(1)25.7+(﹣7.3)+(﹣13.7)+7.3
(2)
(3)﹣14﹣(1﹣0.5)×
(4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平行四邊形的一個(gè)內(nèi)角平分線把平行四邊形一條邊分成2 cm和3 cm兩部分,則平行四邊形的周長(zhǎng)為( ).
A. 10 cm B. 14 cm C. 16 cm D. 14 cm和16 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將兩塊三角板的頂點(diǎn)重合.
(1)請(qǐng)寫(xiě)出圖中所有以點(diǎn)為頂點(diǎn)且小于平角的角;
(2)你寫(xiě)出的角中相等的角有________;
(3)若,試求的度數(shù);
(4)當(dāng)三角板繞點(diǎn)適當(dāng)旋轉(zhuǎn)(保持兩三角板有重合部分)時(shí),與之間具有怎樣的數(shù)量關(guān)系?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com