【題目】如圖,在平面直角坐標系中,△ABC內(nèi)接于⊙P,AB是⊙P的直徑,A(﹣1,0)、C(3,2),BC的延長線交y軸于點D,點F是y軸上的一動點,連接FC并延長交x軸于點E.
(1)求⊙P的半徑;
(2)當∠A=∠DCF時,求證:CE是⊙P的切線.
【答案】(1)3;(2)見解析
【解析】
(1)作CG⊥x軸于G,根據(jù)勾股定理和射影定理即可得到結(jié)論;
(2)連接PC,由AB是⊙P的直徑,得到∠ACB=90°根據(jù)等腰三角形的性質(zhì)得到∠PCB=∠PBC,根據(jù)切線的判定定理即可得到結(jié)論.
(1)作CG⊥x軸于G,
∴AG=3-(-1)=4,CG=,
則AC2=AG2+CG2=42+(2)2=24,
由射影定理得:AC2=AGAB,
∴AB6,
∴⊙P的半徑為3;
(2)連接PC.
∵AB是⊙P的直徑,
∴∠ACB=90°,
∴∠CAB+∠CBA=90°.
∵PC=PB,
∴∠PCB=∠PBC.
∵∠CAB=∠DCF=∠ECB,
∴∠ECB+∠PCB=90°.
∵C在⊙P上,
∴CE是⊙P的切線.
科目:初中數(shù)學 來源: 題型:
【題目】2020年伊始,一場突如其來的疫情防控戰(zhàn)在中華大地驟然打響,全國人民自覺居家減少外出,師生停課不停學,舉國共抗疫情.某中學在復學后,為了了解學生們在居家期間的生活狀態(tài),以更好地保護復學后學生們的身心健康,對本校學生進行了“居家期間學習之余主要活動”的抽樣調(diào)查.種類為:(A)強身健體、(B)藝術(shù)熏陶、(C)經(jīng)典閱讀、(D)分擔勞動、(E)其他.針對以上活動種類,統(tǒng)計學生們花時間最多的種類的人數(shù),以繪制成如下兩幅不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.
請根據(jù)圖中的信息,回答下列問題.
(1)被抽樣調(diào)查的總?cè)藬?shù)為 人;
(2)補全條形統(tǒng)計圖;
(3)若該校共有學生1800人,請估算種類D的大約人數(shù);
(4)據(jù)此疫情經(jīng)歷,給自己提出一條人生建議 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABE中,∠B=90°,AB=BE,將△ABE繞點A逆時針旋轉(zhuǎn)45°,得到△AHD,過D作DC⊥BE交BE的延長線于點C,連接BH并延長交DC于點F,連接DE交BF于點O.下列結(jié)論:①DE平分∠HDC;②DO=OE;③H是BF的中點;④BC-CF=2CE;⑤CD=HF,其中正確的有( )
A.5個B.4個C.3個D.2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在我市迎接奧運圣火的活動中,某校教學樓上懸掛著宣傳條幅DC,小麗同學在點A處,測得條幅頂端D的仰角為30°,再向條幅方向前進10米后,又在點B處測得條幅頂端D的仰角為45°,已知測點A、B和C離地面高度都為1.44米,求條幅頂端D點距離地面的高度.(計算結(jié)果精確到0.1米,參考數(shù)據(jù):.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在銳角三角形ABC中,BC=4,∠ABC=60°,BD平分∠ABC,交AC于點D,M,N分別是BD,BC上的動點,則CM+MN的最小值是( )
A. B. 2C. 2D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,D是弦AC的延長線上一點,且CD=AC,DB的延長線交⊙O于點E.
(1)求證:CD=CE;
(2)連結(jié)AE,若∠D=25°,求∠BAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一只不透明的袋子中裝有標號分別為1、2、3、4、5的5個小球,這些球除標號外都相同.
(1)從袋中任意摸出一個球,摸到標號為偶數(shù)的概率是 ;
(2)先從袋中任意摸出一個球后不放回,將球上的標號作為十位上的數(shù)字,再從袋中任意摸出一個球,將球上的標號作為個位上的數(shù)字,請用畫樹狀圖或列表的方法求組成的兩位數(shù)是奇數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AB=9cm,E是直線CD上一點,連接AC,BE,若AC與BE交于點F且DE=3cm,則EF:BE的值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,B為反比例函數(shù)y=圖象上的點,AD⊥x軸于點D,直線AB分別交x軸,y軸于點E,C,CO=OE=ED.
(1)求直線AB的函數(shù)解析式;
(2)F為點A關(guān)于原點的對稱點,求△ABF的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com