【題目】如圖,在銳角三角形ABC中,BC4,∠ABC60°,BD平分∠ABC,交AC于點D,M,N分別是BDBC上的動點,則CM+MN的最小值是(  )

A. B. 2C. 2D. 4

【答案】C

【解析】

BA上截取BE=BN,構(gòu)造全等三角形BME≌△BMN,利用三角形的三邊的關(guān)系確定線段和的最小值.

解:如圖,在BA上截取BE=BN

因為∠ABC的平分線交AC于點D,
所以∠EBM=NBM
BMEBMN中,

所以BME≌△BMNSAS),
所以ME=MN
所以CM+MN=CM+ME≥CE
因為CM+MN有最小值.
當(dāng)CE是點C到直線AB的距離時,即C到直線AB的垂線段時,CE取最小值為:4×sin60°=2

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以RtABC各邊為邊分別向外作等邊三角形,編號為①、②、③,將②、①如圖所示依次疊在③上,已知四邊形EMNC與四邊形MPQN的面積分別為97,則斜邊BC的長為( 。

A.5B.9C.10D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)

如圖,臺風(fēng)中心位于點P,并沿東北方向PQ移動,已知臺風(fēng)移動的速度為30千米/時,受影響區(qū)域的半徑為200千米,B市位于點P的北偏東75°方向上,距離點P 320千米處.

(1) 說明本次臺風(fēng)會影響B市;

2求這次臺風(fēng)影響B市的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AC為直徑,DEBC,垂足為E

1)求證:CD平分∠ACE

2)判斷直線ED與⊙O的位置關(guān)系,并說明理由;

3)若CE=2AC=8,陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩超市(大型商場)同時開業(yè),為了吸引顧客,都舉行有獎酬賓活動:凡購物滿元,均可得到一次摸獎的機(jī)會.在一個紙盒里裝有個紅球和個白球(編號分別為紅1、紅、白1、白),除顏色外其它都相同,摸獎?wù)咭淮螐闹忻鰞蓚球,根據(jù)球的顏色決定送禮金券(在他們超市使用時,與人民幣等值)的多少(如表)

甲超市:

兩紅

--紅一白

兩白

禮金券()

乙超市:

兩紅

--紅一白

兩白

禮金券()

1)列舉出一次摸獎時兩球的所有情況;

2)如果只考慮中獎因素,你將會選擇去哪個超市購物?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC內(nèi)接于⊙PAB是⊙P的直徑,A(10)、C(3,2),BC的延長線交y軸于點D,點Fy軸上的一動點,連接FC并延長交x軸于點E

1)求⊙P的半徑;

2)當(dāng)∠A=DCF時,求證:CE是⊙P的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規(guī)定,該種玩具每件利潤不能超過60元),每天可售出50件.根據(jù)市場調(diào)查發(fā)現(xiàn),銷售單價每增加2元,每天銷售量會減少1件.設(shè)銷售單價增加元,每天售出件.

1)請寫出之間的函數(shù)表達(dá)式;

2)當(dāng)為多少時,超市每天銷售這種玩具可獲利潤2250元?

3)設(shè)超市每天銷售這種玩具可獲利元,當(dāng)為多少時最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地教育部門為學(xué)生提供了四種在線學(xué)習(xí)方式:閱讀、聽課、答疑、討論,并對部分學(xué)生作了“最感興趣的在線學(xué)習(xí)方式”網(wǎng)絡(luò)調(diào)查(只選擇一類),把調(diào)查結(jié)果繪制成如下兩幅尚不完整的統(tǒng)計圖:

根據(jù)圖中信息,回答下列問題:

1)本次調(diào)查的人數(shù)有   人;在扇形統(tǒng)計圖中,“在線答疑”所在扇形的圓心角度數(shù)是   ;

2)補全條形統(tǒng)計圖;

3)在隨機(jī)調(diào)查的學(xué)生中,甲、乙兩位同學(xué)選擇同類“最感興趣的在線學(xué)習(xí)方式”的概率是否等于?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1l2于點M,以l1上的點O為圓心畫圓,交l1于點AB,交l2于點C,DOM=4,CD=6,點E上的動點,CEAB于點F,AGCE于點G,連接DG,AC,AD

1)求⊙O的半徑長;

2)若DGAB,求DG的長;

3)連接DE,是否存在常數(shù)k,使成立?若存在,請求出k的值;若不存在,請說明理由;

4)當(dāng)點GAD的右側(cè)時,請直接寫出ADG面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案