【題目】如圖,四邊形ABCD中,AD∥BC,∠ABC=90°,DB=DC,E是BC的中點(diǎn),連接DE.
(1)求證:四邊形ABED是矩形;
(2)連接AC,若∠ABD=30°,DC=2,求AC的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)通過(guò)平行線的性質(zhì),證明∠BAD=90°,再通過(guò)等腰三角形的性質(zhì),可得∠DEB=90°,即可證明四邊形ABED是矩形;
(2)先證明△DBC是等邊三角形,可得BD=BC=DC=2,再根據(jù)含30度角的直角三角形的性質(zhì)得出AB=,利用勾股定理即可得出AC的長(zhǎng).
(1)證明:∵AD∥BC,∠ABC=90°,
∴∠BAD=90°,
∵DB=DC,E是BC的中點(diǎn),
∴∠DEB=90°,
∴四邊形ABED是矩形;
(2)解:∵∠ABC=90°,∠ABD=30°,
∴∠DBE=60°,
∵DB=DC,
∴△DBC是等邊三角形,
∴BD=BC=DC=2,
∵在Rt△BAD中,∠ABD=30°,BD=2,
∴AD=1,AB=,
∴在Rt△ABC中,AC==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(x1,y1)、B(x2,y2)在二次函數(shù)y=x2+mx+n的圖像上,當(dāng)x1=1、x2=3時(shí),y1=y2.
(1)若P(a,b1),Q(3,b2)是函數(shù)圖象上的兩點(diǎn),b1>b2,則實(shí)數(shù)a的取值范圍是( )
A.a<1 B.a>3 C.a<1或a>3 D.1<a<3
(2)若拋物線與x軸只有一個(gè)公共點(diǎn),求二次函數(shù)的表達(dá)式.
(3)若對(duì)于任意實(shí)數(shù)x1、x2都有y1+y2≥2,則n的范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在紙片中, ,學(xué)習(xí)小組進(jìn)行如下操作:、如圖2,沿折疊使點(diǎn)落在延長(zhǎng)線上的點(diǎn)處,點(diǎn)是.上一點(diǎn),如圖3,將圖2展平后,再沿折疊使點(diǎn)落在點(diǎn)處,點(diǎn)分別在邊和上,將圖3展平得到圖4,連接,請(qǐng)?jiān)趫D4中解決下列問(wèn)題:
(1)判斷四邊形的形狀, 并證明你的結(jié)論;
(2)若,求四邊形的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線與軸交于點(diǎn)、,頂點(diǎn)為M.
(1)求拋物線的解析式和點(diǎn)M的坐標(biāo);
(2)點(diǎn)E是拋物線段BC上的一個(gè)動(dòng)點(diǎn),設(shè)的面積為S,求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo);
(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得以A、P、C為頂點(diǎn)的三角形是直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=6,將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到△A'BC’,連接A'C,則A'C的長(zhǎng)為( 。
A. 6B. 4+2C. 4+3D. 2+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解七年級(jí)學(xué)生的體重情況,隨機(jī)抽取了七年級(jí)m名學(xué)生進(jìn)行調(diào)查,將抽取學(xué)生的體重情況繪制如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.
組別 | 體重(千克) | 人數(shù) |
A | 37.5≤x<42.5 | 10 |
B | 42.5≤x<47.5 | n |
C | 47.5≤x<52.5 | 40 |
D | 52.5≤x<57.5 | 20 |
E | 57.5≤x<62.5 | 10 |
請(qǐng)根據(jù)圖表信息回答下列問(wèn)題:
(1)填空:①m=_____,②n=_____,③在扇形統(tǒng)計(jì)圖中,C組所在扇形的圓心角的度數(shù)等于_______度;
(2)若把每組中各個(gè)體重值用這組數(shù)據(jù)的中間值代替(例如:A組數(shù)據(jù)中間值為40千克),則被調(diào)查學(xué)生的平均體重是多少千克?
(3)如果該校七年級(jí)有1000名學(xué)生,請(qǐng)估算七年級(jí)體重低于47.5千克的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形ABCD中,點(diǎn)E以lcm/s的速度從點(diǎn)A向點(diǎn)D運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(s),連結(jié)BE,過(guò)點(diǎn)E作EF⊥BE,交CD于F,以EF為直徑作⊙O.
(1)求證:∠1=∠2;
(2)如圖2,連結(jié)BF,交⊙O于點(diǎn)G,并連結(jié)EG.已知AB=4,AD=6.
①用含t的代數(shù)式表示DF的長(zhǎng)
②連結(jié)DG,若△EGD是以EG為腰的等腰三角形,求t的值;
(3)連結(jié)OC,當(dāng)tan∠BFC=3時(shí),恰有OC∥EG,請(qǐng)直接寫(xiě)出tan∠ABE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在BC、CD上,且BE=CF,連接BF、DE交于點(diǎn)M,延長(zhǎng)ED到H使DH=BM,連接AM,AH,則以下四個(gè)結(jié)論:
①△BDF≌△DCE;②∠BMD=120°;③△AMH是等邊三角形;④S四邊形ABCD= AM2.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,平分,于點(diǎn).
(1)若,求的度數(shù):
(2)點(diǎn)為線段的中點(diǎn),連接,求證://.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com