【題目】某校為了解七年級學(xué)生的體重情況,隨機(jī)抽取了七年級m名學(xué)生進(jìn)行調(diào)查,將抽取學(xué)生的體重情況繪制如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖.

組別

體重(千克)

人數(shù)

A

37.5≤x42.5

10

B

42.5≤x47.5

n

C

47.5≤x52.5

40

D

52.5≤x57.5

20

E

57.5≤x62.5

10

請根據(jù)圖表信息回答下列問題:

1)填空:①m=_____,②n=_____,③在扇形統(tǒng)計圖中,C組所在扇形的圓心角的度數(shù)等于_______度;

2)若把每組中各個體重值用這組數(shù)據(jù)的中間值代替(例如:A組數(shù)據(jù)中間值為40千克),則被調(diào)查學(xué)生的平均體重是多少千克?

3)如果該校七年級有1000名學(xué)生,請估算七年級體重低于47.5千克的學(xué)生大約有多少人?

【答案】1)①100,②20,③144;(2)被被抽取同學(xué)的平均體重為50千克;(3)七年級學(xué)生體重低于47.5千克的學(xué)生大約有300人.

【解析】

(1)①m=20÷20%=100,②n=100-10-40-20-10=20,③c=×360°=144°;
(2)被抽取同學(xué)的平均體重為:

(千克);
(3)七年級學(xué)生體重低于47.5千克的學(xué)生1000×30%=300(人).

1)①100,②20,③144;

2)被抽取同學(xué)的平均體重為:

答:被抽取同學(xué)的平均體重為50千克.

3

答:七年級學(xué)生體重低于47.5千克的學(xué)生大約有300人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線ABx軸、y軸分別交于點AB,與反比例函數(shù)y=的圖象在第四象限交于點CCDx軸于點D,tanOAB2OA2,OD1

(1)求該反比例函數(shù)的表達(dá)式;

(2)M是這個反比例函數(shù)圖象上的點,過點MMNy軸,垂足為點N,連接OM、AN,如果SABN2SOMN,直接寫出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接2022年冬奧會,鼓勵更多的學(xué)生參與到志愿服務(wù)中來,甲、乙兩所學(xué)校組織了志愿服務(wù)團(tuán)隊選拔活動.為了了解兩所學(xué)校學(xué)生的整體情況,從兩校進(jìn)入綜合素質(zhì)展示環(huán)節(jié)的學(xué)生中分別隨機(jī)抽取了50名學(xué)生的綜合素質(zhì)展示成績(百分制),并對數(shù)據(jù)(成績)進(jìn)行整理、描述和分析.下面給出了部分信息.

a.甲學(xué)校學(xué)生成績的頻數(shù)分布直方圖如圖:

b.甲學(xué)校學(xué)生成績在8090這一組的是:

80

80

81

81

82

82

83

83

85

86

86

87

88

88

89

89

c.乙學(xué)校學(xué)生成績的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(85分及以上為優(yōu)秀)如下:

平均數(shù)

中位數(shù)

眾數(shù)

優(yōu)秀率

85

84

78

46%

根據(jù)以上信息,回答下列問題:

1)甲學(xué)校學(xué)生成績的中位數(shù)為 分;

2)甲學(xué)校學(xué)生A、乙學(xué)校學(xué)生B的綜合素質(zhì)展示成績同為83分,這兩人在本校學(xué)生中的綜合素質(zhì)展示排名更靠前的是 (填“A”或“B);

3)根據(jù)上述信息,推斷哪所學(xué)校綜合素質(zhì)展示的水平更高,并至少從兩個不同的角度說明推斷的合理性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在中,,點的中點.

1)若點、分別是、的中點,則線段的數(shù)量關(guān)系是 ;線段的位置關(guān)系是 ;

2)如圖①,若點、分別是上的點,且,上述結(jié)論是否依然成立,若成立,請證明;若不成立,請說明理由;

3)如圖②,若點、分別為延長線上的點,且,直接寫出的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ADBC,∠ABC90°,DBDCEBC的中點,連接DE

1)求證:四邊形ABED是矩形;

2)連接AC,若∠ABD30°,DC2,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著科技的發(fā)展,智能產(chǎn)品越來越受到人們的喜愛,為了獎勵員工,某公司打算采購一批智能音箱.現(xiàn)有AB兩款智能音箱可供選擇,已知A款音箱的單價比B款音箱的單價高50元,購買5A款音箱和4B款音箱共需1600元.

1)分別求出A款音箱和B款音箱的單價;

2)公司打算采購AB兩款音箱共20個,且采購AB兩款音箱的總費(fèi)用不超過3500元,那么A款音箱最多采購多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象l與坐標(biāo)軸分別交于點E、F,與雙曲線y=(x0)交于點P(﹣1,n),且F是PE的中點.

(1)求直線l的解析式;

(2)若直線x=a與l交于點A,與雙曲線交于點B(不同于A),問a為何值時,PA=PB?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABAC10厘米,BC12厘米,DBC的中點,點PB出發(fā),以a厘米/秒(a0)的速度沿BA勻速向點A運(yùn)動,點Q同時以1厘米/秒的速度從D出發(fā),沿DB勻速向點B運(yùn)動,其中一個動點到達(dá)終點時,另一個動點也隨之停止運(yùn)動,設(shè)它們的運(yùn)動時間為t.

1)若a2,那么t為何值時△BPQ與△BDA相似?

2)已知MAC上一點,若當(dāng)t時,四邊形PQCM是平行四邊形,求這時點P的運(yùn)動速度.

3)在P、Q兩點運(yùn)動過程中,要使線段PQ在某一時刻平分△ABD的面積,點P的運(yùn)動速度應(yīng)限制在什么范圍內(nèi)?(提示:對于一元二次方程,有如下的結(jié)論:若x1x2是方程ax2+bx+c0a≠0)的兩個根,則x1+x2=﹣,x1x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,四邊形是平行四邊形,上一點,滿足于點,連接

1)如圖,連接,若,求的周長;

2)如圖,延長,交于點,若.求證:

查看答案和解析>>

同步練習(xí)冊答案