【題目】在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù) 的圖象交于兩點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,且

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)求點(diǎn)的坐標(biāo);

(3)軸上是否存在點(diǎn),使有最大值,如果存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】1)反比例函數(shù)表達(dá)式為: ;一次函數(shù)的表達(dá)式為:;(2;(3 點(diǎn)坐標(biāo)為.

【解析】

1)先過(guò)點(diǎn)AADx軸,根據(jù)tanACO=2,求得點(diǎn)A的坐標(biāo),進(jìn)而根據(jù)待定系數(shù)法計(jì)算兩個(gè)函數(shù)解析式;

2)先聯(lián)立兩個(gè)函數(shù)解析式,再通過(guò)解方程求得交點(diǎn)B的坐標(biāo)即可.

3)作點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),可得 ,當(dāng)三點(diǎn)共線時(shí),有最大值;求出的解析式求解即可.

1)過(guò)點(diǎn)軸于

的坐標(biāo)為,的坐標(biāo)為

,

,

,

,

反比例函數(shù)表達(dá)式為: .

點(diǎn)、在直線上,

,解得:,

一次函數(shù)的表達(dá)式為:

2)由得:,

解得:

,

;

3)作點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),可得 ,

當(dāng)三點(diǎn)構(gòu)成三角形時(shí),,

當(dāng)三點(diǎn)共線時(shí),

所以當(dāng)三點(diǎn)共線時(shí),有最大值;

此時(shí),由、可得解析式為,

當(dāng)時(shí),,所以點(diǎn)坐標(biāo)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,C=90°,ABC的平分線交AC于點(diǎn)E,過(guò)點(diǎn)EBE的垂線交AB于點(diǎn)F,OBEF的外接圓.

1)求證:ACO的切線;

2)過(guò)點(diǎn)EEHAB,垂足為H,求證:CD=HF;

3)若CD=1,EH=3,求BFAF長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了鼓勵(lì)居民節(jié)約用水,采用分段計(jì)費(fèi)的方法按月計(jì)算每戶家庭的水費(fèi),月用水量不超過(guò)20時(shí),按2元/計(jì)費(fèi);月用水量超過(guò)20時(shí),其中的20仍按2元/收費(fèi),超過(guò)部分按元/計(jì)費(fèi).設(shè)每戶家庭用用水量為時(shí),應(yīng)交水費(fèi)元.

(1)分別求出時(shí)的函數(shù)表達(dá)式;

(2)小明家第二季度交納水費(fèi)的情況如下:

月份

四月份

五月份

六月份

交費(fèi)金額

30元

34元

42.6元

小明家這個(gè)季度共用水多少立方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一段河壩的斷面為梯形ABCD,試根據(jù)圖中數(shù)據(jù),求出坡角和壩底寬AD.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一張正方形紙的內(nèi)部被針扎了2010個(gè)孔,這些孔和正方形的頂點(diǎn)之中的任何3點(diǎn)都不共線.作若干條互不相交的線段,它們的端點(diǎn)都是這些孔或正方形的頂點(diǎn),這些線段將正方形分割成一些三角形,并且在這些三角形的內(nèi)部和邊上都不再有小孔.請(qǐng)問(wèn)一共作了多少條線段?共得到了多少個(gè)三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線 經(jīng)過(guò) 兩點(diǎn),與 軸相交于點(diǎn) ,連接 .點(diǎn) 為拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn) 軸的垂線 ,交直線 于點(diǎn) ,交 軸于點(diǎn)

求拋物線的表達(dá)式;

當(dāng) 位于 軸右邊的拋物線上運(yùn)動(dòng)時(shí),過(guò)點(diǎn) 直線 , 為垂足.當(dāng)點(diǎn) 運(yùn)動(dòng)到何處時(shí),以 , , 為頂點(diǎn)的三角形與 相似?并求出此時(shí)點(diǎn) 的坐標(biāo);

如圖2,當(dāng)點(diǎn) 在位于直線 上方的拋物線上運(yùn)動(dòng)時(shí),連接 , .請(qǐng)問(wèn) 的面積 能否取得最大值?若能,請(qǐng)求出最大面積 ,并求出此時(shí)點(diǎn) 的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,并完成相應(yīng)任務(wù).

古希臘數(shù)學(xué)家,天文學(xué)家歐多克索斯(Eudoxus,約前400—347)曾提出:能否將一

條線段分成不相等的兩部分.使較短線段與較長(zhǎng)線段的比等于較長(zhǎng)線段與原線段的比,這個(gè)相等的比就是,黃金分割在我們生活中有廣泛運(yùn)用.黃金分割點(diǎn)也可以用折紙的方式得到.

第一步:裁一張正方形的紙片,先折出的中點(diǎn),然后展平,再折出線段,再展平;

第二步:將紙片沿折疊,使落到線段上,的對(duì)應(yīng)點(diǎn)為,展平;

第三步:沿折疊,使落在上,的對(duì)應(yīng)點(diǎn)為,展平,這時(shí)就是的黃金分割點(diǎn).

古希臘數(shù)學(xué)家,天文學(xué)家歐多克索斯(Eudoxus,約前400—347)曾提出:能否將一

條線段分成不相等的兩部分.使較短線段與較長(zhǎng)線段的比等于較長(zhǎng)線段與原線段的比,這個(gè)相等的比就是,黃金分割在我們生活中有廣泛運(yùn)用.黃金分割點(diǎn)也可以用折紙的方式得到.

第一步:裁一張正方形的紙片,先折出的中點(diǎn),然后展平,再折出線段,再展平;

第二步:將紙片沿折疊,使落到線段上,的對(duì)應(yīng)點(diǎn)為,展平;

第三步:沿折疊,使落在上,的對(duì)應(yīng)點(diǎn)為,展平,這時(shí)就是的黃金分割點(diǎn).

任務(wù):(1)試根據(jù)以上操作步驟證明就是的黃金分割點(diǎn);

2)請(qǐng)寫出一個(gè)生活中應(yīng)用黃金分割的實(shí)際例子.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】港珠澳大橋,從2009年開工建造,于20181024日正式通車.其全長(zhǎng)55公里,連接港珠澳三地,集橋、島、隧于一體,是世界上最長(zhǎng)的跨海大橋.如圖是港珠澳大橋的海豚塔部分效果圖,為了測(cè)得海豚塔斜拉索頂端A距離海平面的高度,先測(cè)出斜拉索底端C到橋塔的距離(CD的長(zhǎng))約為100米,又在C點(diǎn)測(cè)得A點(diǎn)的仰角為30°,測(cè)得B點(diǎn)的俯角為20°,求斜拉索頂端A點(diǎn)到海平面B點(diǎn)的距離(AB的長(zhǎng)).(已知1.73,tan20°≈0.36,結(jié)果精確到0.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正多邊形每個(gè)內(nèi)角比相鄰?fù)饨谴?/span>60°.

1)求這個(gè)正多邊形的邊數(shù);

2)求這個(gè)正多邊形的內(nèi)切圓與外切圓的半徑之比;

3)將這個(gè)多邊形對(duì)折,并完全重合,求得到圖形的內(nèi)角和是多少度(按一層計(jì)算)?

查看答案和解析>>

同步練習(xí)冊(cè)答案