【題目】“轉(zhuǎn)化”是數(shù)學(xué)中的一種重要思想,即把陌生的問題轉(zhuǎn)化成熟悉的問題,把復(fù)雜的問題轉(zhuǎn)化成簡(jiǎn)單的問題,把抽象的問題轉(zhuǎn)化為具體的問題.
(1)請(qǐng)你根據(jù)已經(jīng)學(xué)過的知識(shí)求出下面星形圖(1)中∠A+∠B+∠C+∠D+∠E的度數(shù);
(2)若對(duì)圖(1)中星形截去一個(gè)角,如圖(2),請(qǐng)你求出∠A+∠B+∠C+∠D+∠E+∠F的度數(shù);
(3)若再對(duì)圖(2)中的角進(jìn)一步截去,你能由題(2)中所得的方法或規(guī)律,猜想圖3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度數(shù)嗎?只要寫出結(jié)論,不需要寫出解題過程)
【答案】(1)180°;(2)360°;(3)1080°.
【解析】
(1)根據(jù)三角形外角的性質(zhì)和三角形內(nèi)角和定理可得∠A+∠B+∠C+∠D+∠E的度數(shù);
(2)根據(jù)三角形外角的性質(zhì)和四邊形內(nèi)角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度數(shù);
(3)根據(jù)圖中可找出規(guī)律∠A+∠B+∠C+∠D+∠E=180°,并且每截去一個(gè)角則會(huì)增加180度,由此即可求出答案.
(1)∵∠1=∠2+∠D=∠B+∠E+∠D,∠1+∠A+∠C=180°,
∴∠A+∠B+∠C+∠D+∠E=180°;
(2))∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A+∠C+∠D=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°;
(3)根據(jù)圖中可得出規(guī)律∠A+∠B+∠C+∠D+∠E=180°,每截去一個(gè)角則會(huì)增加180度,
所以當(dāng)截去5個(gè)角時(shí)增加了180×5度,
則∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=180×5+180=1080°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P(1,5)、Q(m,n)在反比例函數(shù)的圖象上,過點(diǎn)P分別作x軸、y軸的垂線,垂足分別為A、B,點(diǎn)Q為圖象上的動(dòng)點(diǎn),過點(diǎn)Q分別作x軸、y軸的垂線,垂足分別為C、D,兩垂線相交于點(diǎn)E,隨著m的增大,四邊形OCQD與四邊形OAPB不重合的面積變化為( )
A. 先增大后減小 B. 先減小后增大 C. 先減小后增大再減小 D. 先增大后減小再增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點(diǎn),連接AE、BE,BE⊥AE,延長(zhǎng)AE交BC的延長(zhǎng)線于點(diǎn)F.
求證:(1)FC=AD;(2)AB=BC+AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將兩塊直角三角形的一條直角邊重合疊放,已知AC=BC=+1,∠D=60°,則兩條斜邊的交點(diǎn)E到直角邊BC的距離是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,為了躲避臺(tái)風(fēng),一輪船一直由西向東航行,上午點(diǎn),在處測(cè)得小島的方向是北偏東,以每小時(shí)海里的速度繼續(xù)向東航行,中午點(diǎn)到達(dá)處,并測(cè)得小島的方向是北偏東,若小島周圍海里內(nèi)有暗礁,問該輪船是否能一直向東航行?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形網(wǎng)格中(每個(gè)小正方形的邊長(zhǎng)都為1個(gè)單位),在平面直角坐標(biāo)系內(nèi),△OBC的頂點(diǎn)B、C分別為B(0,﹣4),C(2,﹣4).
(1)請(qǐng)?jiān)趫D中標(biāo)出△OBC的外接圓的圓心P的位置,并填寫:圓心P的坐標(biāo)為 ;
(2)畫出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的△OB1C1;
(3)在(2)的條件下,求出旋轉(zhuǎn)過程中點(diǎn)C所經(jīng)過分路徑長(zhǎng)(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖顯示了用計(jì)算機(jī)模擬隨機(jī)拋擲一枚硬幣的某次實(shí)驗(yàn)的結(jié)果
下面有三個(gè)推斷:
①當(dāng)拋擲次數(shù)是100時(shí),計(jì)算機(jī)記錄“正面向上”的次數(shù)是47,所以“正面向上”的概率是0.47;
②隨著試驗(yàn)次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)“正面向上”的概率是0.5;
③若再次用計(jì)算機(jī)模擬此實(shí)驗(yàn),則當(dāng)拋擲次數(shù)為150時(shí),“正面向上”的頻率一定是0.45.
其中合理的是
A. ① B. ② C. ①② D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … |
y | … | ﹣6 | 0 | 4 | 6 | 6 | … |
從上表可知,下列說(shuō)法正確的有多少個(gè)
①拋物線與x軸的一個(gè)交點(diǎn)為(﹣2,0);
②拋物線與y軸的交點(diǎn)為(0,6);
③拋物線的對(duì)稱軸是直線x=;
④拋物線與x軸的另一個(gè)交點(diǎn)為(3,0);
⑤在對(duì)稱軸左側(cè),y隨x增大而減少.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是以為斜邊的等腰直角三角形,為的中點(diǎn),點(diǎn)、、分別為線段,,上的一點(diǎn),以為直角頂點(diǎn)的等腰直角三角形,,連結(jié).
(1)當(dāng)與點(diǎn)重合時(shí),求的長(zhǎng).
(2)當(dāng)時(shí),求的面積.
(3)①比較與的面積大小關(guān)系,并說(shuō)明理由.
②當(dāng)的面積為6時(shí),求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com