【題目】如圖,正方形網(wǎng)格中(每個小正方形的邊長都為1個單位),在平面直角坐標(biāo)系內(nèi),△OBC的頂點B、C分別為B(0,﹣4),C(2,﹣4).

(1)請在圖中標(biāo)出△OBC的外接圓的圓心P的位置,并填寫:圓心P的坐標(biāo)為 ;

(2)畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后的△OB1C1;

(3)(2)的條件下,求出旋轉(zhuǎn)過程中點C所經(jīng)過分路徑長(結(jié)果保留π).

【答案】(1)P點的位置詳見解析,P(1,-2);(2)詳見解析;(3).

【解析】

(1)由點B(0,-4),C(2,-4)可得△OBC是直角三角形,則斜邊的中點即為外心;(2)畫出B,C繞點O逆時針旋轉(zhuǎn)90°后的得到B1,C1, 依次連接即可;(3)計算出OC的長,由點C的運動路徑為OC為半徑,圓心角為90°的弧,由弧長公式計算即可.

(1)已知點B(0,-4),C(2,-4),可得△OBC是直角三角形

∴△OBC的外接圓的圓心在斜邊OC的中點上;

C(2,-4),

∴P(1,-2).

;

(2)如圖.

(3)∵C(2,-4),∴OC= 路徑長

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的ABC,若小方格邊長為1,格點ABC(頂點是網(wǎng)格線交點的三角形)的頂點A,C的坐標(biāo)分別為(﹣1,1),(0,﹣2),請你根據(jù)所學(xué)的知識.

(1)在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;

(2)作出ABC關(guān)于y軸對稱的三角形A1B1C1;

(3)判斷ABC的形狀,并求出ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在長方形ABCD中,AB=DC=4,AD=BC=5.延長BCE,使CE=2,連接DE.動點P從點B出發(fā),以每秒2個單位的速度沿BCCDDA向終點A運動,設(shè)點P運動的時間為t秒.

1)請用含t的式子表達(dá)ABP的面積S;

2)是否存在某個t值,使得DCPDCE全等?若存在,請求出所有滿足條件的t值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖中的折線ABC表示某汽車的耗油量y(單位:L/km)與速度x(單位:km/h)之間的函數(shù)關(guān)系(30≤x≤120),已知線段BC表示的函數(shù)關(guān)系中,該汽車的速度每增加1km/h,耗油量增加0.002L/km

1)當(dāng)速度為50km/h、100km/h時,該汽車的耗油量分別為 L/km、 L/km

2)求線段AB所表示的yx之間的函數(shù)表達(dá)式.

3)速度是多少時,該汽車的耗油量最低.最低是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】轉(zhuǎn)化是數(shù)學(xué)中的一種重要思想,即把陌生的問題轉(zhuǎn)化成熟悉的問題,把復(fù)雜的問題轉(zhuǎn)化成簡單的問題,把抽象的問題轉(zhuǎn)化為具體的問題.

(1)請你根據(jù)已經(jīng)學(xué)過的知識求出下面星形圖(1)中∠A+∠B+∠C+∠D+∠E的度數(shù);

(2)若對圖(1)中星形截去一個角,如圖(2),請你求出∠A+∠B+∠C+∠D+∠E+∠F的度數(shù);

(3)若再對圖(2)中的角進一步截去,你能由題(2)中所得的方法或規(guī)律,猜想圖3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度數(shù)嗎?只要寫出結(jié)論,不需要寫出解題過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BACBC于點D,OAB上一點,經(jīng)過點A,D⊙O分別交AB,AC于點E,F(xiàn),連接OFAD于點G.

(1)求證:BC⊙O的切線;

(2)設(shè)AB=x,AF=y,試用含x,y的代數(shù)式表示線段AD的長;

(3)BE=8,sinB=,求DG的長,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,每個小正方形邊長都是1.

(1)按要求作圖:

①以坐標(biāo)原點O為旋轉(zhuǎn)中心,將ABC逆時針旋轉(zhuǎn)90°得到A1B1C1;

②作出A1B1C1關(guān)于原點成中心對稱的中心對稱圖形A2B2C2

(2)A2B2C2中頂點B2坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0)的圖象交于點A(3,1),且過點B(0,﹣2).

(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

(2)如果點P是x軸上一點,且△ABP的面積是3,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,點DE分別在邊BC,AC上,DEAB,過點EEFDE,交BC的延長線于點F

1)求∠F的度數(shù);

2)若CD2,求DF、EF的長.

查看答案和解析>>

同步練習(xí)冊答案