【題目】閱讀理解題:

定義:如果一個數(shù)的平方等于-1,記為=-1,這個數(shù)i叫做虛數(shù)單位,把形如abi (a,b為實數(shù))的數(shù)叫做復(fù)數(shù),其中a叫這個復(fù)數(shù)的實部,b叫做這個復(fù)數(shù)的虛部.它的加,減,乘法運算與整式的加,減,乘法運算類似.例如,計算:

(1i )(23i )(12)(13)i32i;

(1i )×(3i )1×3ii3(13)i142i

根據(jù)以上信息,完成下列問題:

1)填空:_______,________;________

2)計算:(2i )×(13i );

【答案】1-i,1 1;(2.

【解析】

新定義問題,認真閱讀已知條件,找到解題關(guān)鍵.

1-i,1 1;

2 (2i )×(13i );

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】荊州古城是聞名遐邇的歷史文化名城,五一期間相關(guān)部門對到荊州觀光游客的出行方式進行了隨機抽樣調(diào)查,整理后繪制了兩幅統(tǒng)計圖(尚不完整).根據(jù)圖中信息,下列結(jié)論錯誤的是( 。

A. 本次抽樣調(diào)查的樣本容量是5000

B. 扇形圖中的m10%

C. 樣本中選擇公共交通出行的有2500

D. 五一期間到荊州觀光的游客有50萬人,則選擇自駕方式出行的有25萬人

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰三角形ABC中,BAC=120°,AB=AC=2,點D是BC邊上的一個動點(不與B、C重合),在AC上取一點E,使ADE=30°.

(1)求證:ABD∽△DCE;

(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式并寫出自變量x的取值范圍;

(3)當(dāng)ADE是等腰三角形時,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】CD經(jīng)過∠BCA頂點C的一條直線,CA=CB,EF分別是直線CD上兩點,且∠BEC=CFA=

1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E、F在射線CD上,請解決下面兩個問題:

①如圖1,若∠BCA=90°,=90°,則BE_____CF;EF____.(填”““=”

②如圖2,若<∠BCA180°,請?zhí)砑右粋關(guān)于∠與∠BCA關(guān)系的條件__________,使①中的兩個結(jié)論仍然成立,并證明兩個結(jié)論成立.

2)如圖3,若直線CD經(jīng)過∠BCA的外部,∠=BCA,請?zhí)岢?/span>EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(發(fā)現(xiàn)問題)

如圖1,已知,以點為直角頂點,為腰向外作等腰直角、請你以為直角頂點、為腰,向外作等腰直角(不寫作法,保留作圖痕跡).連接、.那么的數(shù)量關(guān)系是________

(拓展探究)

如圖2,已知,以、為邊向外作正方形和正方形,連接,試判斷之間的數(shù)量關(guān)系,并說明理由.

(解決問題)

如圖3,有一個四邊形場地,,,,,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】母親節(jié)前夕,我市某校學(xué)生積極參與關(guān)愛貧困母親的活動,他們購進一批單價為20元的孝文化衫在課余時間進行義賣,要求每件銷售價格不得高于27元,并將所得利潤捐給貧困母親。經(jīng)試驗發(fā)現(xiàn),若每件按22元的價格銷售時,每天能賣出42件;若每件按25元的價格銷售時,每天能賣出33件.假定每天銷售件數(shù)y(件)與銷售價格x(元/件)滿足一個以x為自變量的一次函數(shù).

1)求yx滿足的函數(shù)關(guān)系式(不要求寫出x的取值范圍);

2)在不積壓且不考慮其他因素的情況下,銷售價格定為多少元時,才能使每天獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題情境)如圖①,在△ABC中,若AB10AC6,求BC邊上的中線AD的取值范圍.

1)(問題解決)延長AD到點E使DEAD,再連接BE(或?qū)ⅰ?/span>ACD繞著點D逆時針旋轉(zhuǎn)180°得到△EBD),把ABAC2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷出中線AD的取值范圍是   

(反思感悟)解題時,條件中若出現(xiàn)“中點”、“中線”字樣,可以考慮構(gòu)造以該中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結(jié)論集中到同個三角形中,從而解決問題.

2)(嘗試應(yīng)用)如圖②,△ABC中,∠BAC90°,ADBC邊上的中線,試猜想線段AB,AC,AD之間的數(shù)量關(guān)系,并說明理由.

3)(拓展延伸)如圖③,△ABC中,∠BAC90°,DBC的中點,DMDN,DMAB于點M,DNAC于點N,連接MN.當(dāng)BM4,MN5,AC6時,請直接寫出中線AD的取值范圍.(溫馨提示:如果設(shè)直角三角形的兩條直角邊長度分別是ab,斜邊長度是c,那么可以用數(shù)學(xué)語言表達三邊關(guān)系,a2+b2c2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠A=30°,點O是邊AB上一點,以點O為圓心,以OB為半徑作圓,⊙O恰好與AC相切于點D,連接BD.若BD平分∠ABC,AD=2,則線段CD的長是(  )

A. 2 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在RtABC中,∠ACB=90°AE平分∠BACBC于點E,DAC上的點,BE=DE

1)求證:∠B+EDA=180°;

2)求 的值。.

查看答案和解析>>

同步練習(xí)冊答案